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Abstract - Real world datasets may be continuous. Many data analysis algorithms work efficiently on discrete 

data while some other algorithms work only on discrete data. Thus the continuous datasets are discretized as 
a pre-process step to knowledge acquisition. Attribute discretization is the process of reducing the domain of a 
continuous attribute with irreducible and optimal set of cuts, while preserving the consistency of the dataset 
classification. In this paper, we use discernibility relations of Rough Set Theory (RST) and propose a 2-step 
discretization process, where the set of cuts returned from MD-Heuristics approach are further reduced using 
Genetic Algorithm (GA). Experiments on datasets from UCI Machine Learning Repository show that the 
proposed discretization process is efficient in finding a consistent and irreducible set of cuts. 

Keywords - Discretization, Genetic Algorithm, Rough Set Theory 

1. Introduction 

Any real world data can be represented and stored in the form of an information table, also known as decision 
table. All rows of the decision table called objects or examples make up knowledge, and are described by a 
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set of properties called attributes. Analysis of decision table, to extract patterns and for classification of 
objects, is an important task in data mining, knowledge discovery, decision analysis, machine learning and 
pattern recognition. Quality of data analysis algorithms on decision tables with continuous attributes is good, 
when attribute domain is small, as some algorithms work only on discrete data, while some other algorithms 
work efficiently on discrete data. The process of reducing the domain of continuous attributes is called 
discretization, and is achieved by replacing the domain of the continuous attributes with a finite number of 
discrete intervals. Various discretization approaches have been described in literature [2], [3], [8], [6]. 
Discretization of continuous attributes is shown to be a NP-hard problem in [9], [10], [7] by characterizing the 
computational complexity of the problem in terms of RST discernibility relations. Heuristic discretization 
methods based on RST discernibility relations and boolean reasoning are well studied in [16], [12] giving a 
suboptimal solution. We propose a 2-step discretization approach, using RST discernibility relations, MD-
Heuristics approach and Genetic Algorithm. Discretization can also be achieved using GA alone, but the 
search space will be huge for large datasets and more time will be taken to find optimal set of cuts [1]. Thus 
we are reducing the GA search space by considering only the set of cuts returned from MD-Heuristics. In this 
discretization process, all the superfluous cuts from MD-heuristics will be reduced using GA, thus consistent 
and irreducible set of cuts are identified with in less time.  

The rest of the paper is organized as follows: Section 2 introduces basic concepts of RST, Section 3 describes 
the concepts of discretization and discernibility matrix discretization approach and MD-Heuristics approach, 
Section 4 describes the proposed 2-step discretization approach, Section 5 describes experimental results on 
different datasets and Section 6 describes the conclusion of the paper. 

2. Rough Sets 

RST was introduced by Pawlak in 1982 [17], [14], [13], a mathematical methodology in data analysis, to 
handle uncertain information in data sets. RST carries through challenging tasks like attribute reduction, 
attribute discretization, identifying patterns in data, computation of attribute relevance and dataset 
characterization. Some of the applications of RST include machine learning, data mining, decision analysis, 
pattern recognition and knowledge discovery [11]. 

Decision table is defined as a 5 tuple � =  (�, �, �, 	, 
), where � is the universe of all objects �
�, 
�, 
�, … �, � is the set of all conditional attributes ���, ��, ��, … �, � is the decision attribute, � ∉   �, � decides 
the class of an object, let ���, ��, ��, … � be distinct decisions in �, 	 =  ⋃ 	�� ∈  � , where 	� is the domain of the 
conditional attribute �, 
: � ×   � →  	 is a mapping function, where 
(
, �) represents a value for object 
 on 
attribute � in the domain  	�. 

The principal idea of RST is indiscernibility relation ��. Object 
� is said to be indiscernible from object 
 , if they have same values for all attributes in !. �� is also known as equivalence relation as it satisfies 
reflexive, symmetric and transitive properties.   

��  =   �(
� , 
 )  ∈   � ×   �  | 
(
� , #)  =  
(
 , #),   ∀  # ∈   !, ! ⊆  �� 
Equivalence class of an object  
� , &
�'()  is defined as the set of objects those that are indiscernible 

from  
�. Decision class of a decision �� is defined as, the set of all objects with �� as their decision. Decision 
class of �� is denoted by *�,  
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*� =  � 
+ |
(
+, �) =  ��, ∀  
+ ∈  � � 
The set of all decision classes, , partitions �. 

, =  �*�, *�, *�, … �,    � =  - *�  
Rough set of a decision class *� on any subset of conditional attributes ! ⊆  �, is defined by a lower 

approximation and an upper approximation. Lower approximation of *� on ! is defined as, the set of objects 
that are certainly belonging to decision class *�. Upper approximation of *�  on ! is defined as, the set of 
objects that may belong to decision class *�. 

 #./�(*�) =  - 0 1 
 2() ∣∣∣  1
 2() ⊆   *�  4 
#./�(*�) =  - 0 1 
 2() ∣∣∣  1
 2()  ∩ *� ≠   7 4 

Consistency of a decision table is defined in terms of a generalized decision function. A generalized 

decision function of an object  
� on a set of conditional attributes !, ! ⊆  �, is defined as the set of decisions 
of all the objects in the equivalence class of 
�. 

8 ∶  � →  2;<   and   8�( 
�) =  =
>
 , �? @
 ∈ &
�'()A where 
	B = - 
(
�, �) =  ���, ��, ��, … � 

Decision table is said to be consistent, if the cardinality of  8� is 1 for all the objects in �. 

� = C �
DEFEGHDG, |∂J( 
�)| =  1, ∀  
� ∈  UFD�
DEFEGHDG, 
GℎH/NFEH O 
3. Discretization of continuous attributes 

Let � be a consistent decision table and let 	�  =  &P� , /�) ⊂ ℜ, where � ∈  �, ℜ is the set of real numbers and P� <  /�. Any pair (�, T) is called a cut on 	�, where T ∈   	�. 
Definition 1[12]. The set of basic cuts on an attribute � ∈  �, denoted by U�, is defined as  

U� =  VW�, (T�� +  T��)2 Y , W�, (T�� +  T��)2 Y , … , W�, (TZ[�� + TZ�)2 Y\ 
where T�� <  T�� <  … <  TZ]�  is a sequence of continuous values defined by � and  

 - 
(
� , �) =  =T�� , T��, … , TZ]� A 
Let U be the set of all basic cuts defined on all conditional attributes 
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U =  - U���∈ ��  
Definition 2[12]. A new decision system ^ − �FE�/HGF`#GF
D 

 �, is defined as a 6 tuple �a =  (�, �, �, ^, 	a , 
a), where ^ is the set of cuts 

^ =  -� �̂| �̂ =  �.��  , .��, … , .Z�  �, .�� <  .�� <  …  <  .Z���∈�  

a(
, �) = b 0, 
(
, �) < .��F, 
(
, �) ∈ &.�� , .�d�� ), 1 ≤ F ≤ f − 1f + 1, 
(
, �) > .Z�

O 
Quality of ^ − �FE�/HGF`#GF
D 

 �  is defined as the ratio of the number of all objects in lower 

approximation to the total number of objects in �. 
i =  #./a(,)|�|  , NℎH/H #./a(,) =  - #./�(*�)jk∈l  

Definition 3[12]. A set of cuts ^, is called � − �
DEFEGHDG if 8  =  8a   , where 8 and 8a  are the generalized 
definition functions of � and �a respectively. 
Definition 4[12]. A set of cuts ^, is called � − F//H�m�FnPH if ^ is � − �
DEFEGHDG and for any ^o, ^o ⊂  ^, ^′ is 
not � − �
DEFEGHDG. 
Definition 5[12]. A set of cuts ^, is called � − 
.GFq#P if ^ is � − �
DEFEGHDG and for any � − �
DEFEGHDG set of 
cuts ^o, |^| ≤  |^o|  

Let �∗ =  � �∗, U, 
∗� be an information table, where �∗ be the set of pairs (F, +), such that F <  + and 
(
� , �) ≠  
(
 , �), U is the set of all basic cuts on �, 
∗ is a mapping function 
∗: �∗ ×  U →  �0  
/  1�,  

∗((F, +), ptu) = C1, 
(
� , c) <  ptu ≤ 
>
 , c? or 
(
 , c)  <  ptu  ≤ 
(
�, c)0, otherwise O 

where � ∈  �, .�� ∈  U�. The set of � − �
DEFEGHDG, � − F//H�m�FnPH and � − 
.GFq#P cuts can be generated from �∗. 
3.1 Discernibility matrix approach to discretization 

Discernibility matrix is introduced by Skowron and Rauszer [15]. Let � =  ��∗, �∗� be a discernibility matrix. 

Rows of the matrix �∗, are the set of pairs (F, +), such that F <  + and 
(
�, �) ≠  
>
 , �?, columns of the matrix �∗, are the intervals &TZ� , TZ d �� ), ∀ � ∈  �    and 1 ≤  f <  |	�|. Element of the matrix � is defined as, 



 

http://www.ijccr.com 

VOLUME 2 ISSUE 1 JANUARY 2012 

 

 

 

 


(�) = �1, �&TZ�, TZd�� ) ⊆ �qFD �
(
� , �), 
>
 , �?� , q#� �
(
�, �), 
>
 , �?��0, 
GℎH/NFEH O 
The discernibility function, is defined as 
(�) = ⋀=⋁�� A. 
The prime implicant of 
(�), is of the form 0�TZ��� , TZ�d ��� �, … , �TZ��� , TZ�d ��� �4. These prime implicants 

defines set of cuts of the form,  

^ =   b���, �TZ��� , TZ�d ��� �2 � , … , ��� , TZ��� , TZ�d ���
2 �� 

 ^ is � − �
DEFEGHDG and � − F//H�m�FnPH set of cuts, and the minimal of all such ^'s is the � − 
.GFq#P 
set of cuts. Searching for  � − 
.GFq#P set of cuts is a NP-hard problem. Efficient heuristics will help in 
identifying optimal set of cuts. The next section describes MD-heuristics, a heuristic based approach to find 
reasonable set of cuts. 

3.2 MD-heuristics approach to discretization 

Using MD-heuristics, the best set of cuts can be found in �(|�||�|) steps, with �(|�||�|) memory usage [12]. 
Consider the information table �∗. In this approach the column in �∗, with maximum number of 1's is added to 

the set of cuts, then that column is deleted from �∗, together with all rows with 1 in that column. This process is 
repeated till �∗ is empty. The best set of cuts obtained using this approach might not be a � − 
.GFq#P set of 
cuts, it may include superfluous cuts which have to be removed. The next section describes a 2-step 
discretization approach to generate an � − �
DEFEGHDG and � − F//H�m�FnPH set of cuts. This approach is based 
on the set of cuts returned from MD-heuristics and Genetic Algorithm. 

 

4. 2-step Discretization approach 

In this approach, all the superfluous cuts generated by MD-heuristics will be reduced using GA. 2-step 
Discretization approach is as shown in Figure 1.  
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Fig.1. 2-Step discretization approach 

4.1 Genetic Algorithm 

GA provides a methodology to solve optimization problems. GA is motivated by biological evolution [5] and is 
stochastic in searching a huge search space. The proposed GA starts with the best set of cuts, ^ generated by 
MD-heuristics approach, superfluous cuts are identified in ^ and are discarded through GA iterations and 
finally � − �
DEFEGHDG and � − F//H�m�FnPH set of cuts are generated. If there are no superfluous cuts in ^, then 
GA will return the same set of cuts ^. 
 

 

4.1.1 Representation 

Let ^ be the set of cuts returned from MD-heuristics approach. Each candidate set of cuts, is represented as a 

chromosome by a bit string of length |^|. A 1 in the bit string at position F represents, the cut .� is present in 
the candidate set of cuts and a 0 in the bit string at position F represents the cut .� is not present in the 
candidate set of cuts. 

4.1.2 Initial Population 

Initial population includes the chromosome representation of ^, i.e., a bit string of all 1's of length |^| along 
with randomly generated chromosomes. Size of population is set to 20. 

 



 

http://www.ijccr.com 

VOLUME 2 ISSUE 1 JANUARY 2012 

 

 

 

 

4.1.3 Fitness Function 

Fitness function is designed in such a way to discard any superfluous cuts from ^, while being � − �
DEFEGHDG. 
Consider the information system �∗. Fitness function of a candidate set of cuts ^′ is denoted by 
(�ℎa� ).  


(�ℎa�) = �|�|[@a�@|�| , ⋀=⋁
∗>(F, +), .�?A = 1 ∀.� ∈ ^o
0, 
GℎH/NFEH O      (1) 

where U is the basic set of cuts and |^′| is the total number of 1's in the chromosome �ℎa� 
4.1.4 Proof of Fitness Function 

The correctness of fitness function for attribute discretization, defined in Equation 1 is proved in Theorem 1. 
Theorem 1. Candidate set of cuts with maximum fitness value is � − �
DEFEGHDG and � − F//H�m�FnPH. 
Proof. A chromosome will get a positive fitness value, only if set of cuts defined by the chromosome is � − �
DEFEGHDG, otherwise fitness value will be zero.  

Let �̂o and �̂o  be two � − �
DEFEGHDG chromosomes with fitness values 
>�ℎa��? and 
>�ℎa��? respectively 
and let 


>�ℎa��? <  
>�ℎa��? 
⇒   |U| −  | �̂o||U| <  |U| −  | �̂o||U|  

⇒  | �̂o| >  | �̂o| 
�̂o has less number of cuts and greater fitness value than �̂o. Therefore the candidate with maximum fitness 
value will be � − �
DEFEGHDG and with no superfluous cuts in it i.e., � − F//H�m�FnPH. 
4.1.5 Algorithm 

The GA with the proposed fitness function is as shown in Algorithm 1. The algorithm is run with the GA 
parameter settings as shown in Table 1. 

Table 1. GA parameter settings 

Parameter name Parameter value 

Population size 20 

Population type Bit String 

Creation function Uniform 

Scaling function Rank 

Selection function Stochastic uniform 
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Elite count 2 

Crossover fraction 0.8 

Crossover function Scattered 

Mutation rate 0.01 

Stopping criteria Avg. change in fitness value < 10[� 
 

Algorithm 1: Algorithm to find � − �
DEFEGHDG and � − F//H�m�FnPH set of cuts using GA 

Input: Population type, population size, creation function, scaling function, selection function, elite count, 
crossover rate, fitness function, crossover function, mutation function, iteration count 

Output: � − �
DEFEGHDG and � − F//H�m�FnPH set of cuts 
Begin 

1: Search space of GA is 2� − 1 possible candidate set of cuts, where D is the number of cuts returned by MD-
heuristics. 

2: Include the set of cuts returned by MD-heuristics in Initial population.  

3: Use uniform creation function and generate the rest of the initial population of given population size. 

4: Evaluate fitness value, for each candidate set of cuts by using the fitness function given in Equation (1). 

5: Candidate set of cuts are sorted as per fitness value. Rank is assigned to each candidate basing on its 
position in the sorted list. 

6: Repeat steps 7-10, until the average change in the fitness value is less than 10[� 
7: Generate offspring's by using scattered crossover function with crossover rate as 0.8. In scattered 
crossover function a random binary vector is created. Offspring's are generated by taking genes from first 
parent where the binary vector is 1 and genes from the second parent where the binary vector is 0. Include 
these offspring's in the next generation.  

8: Apply mutation operator to the candidates in next generation, with mutation rate of 0.01.  

9: Evaluate fitness value for each candidate set of cuts of the next generation. 

10: Elite count is taken as 2, so top 2 fittest candidates are guaranteed to survive in the next generation. 

11: Output the candidate set of cuts, that has the maximum fitness value from the current population. 

5. Experiments 
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The proposed algorithm is evaluated on University of California, Irvine (UCI) Machine learning repository data 
sets iris, glass, wine, liver-disorders and ecoli [4]. Table 2 describes these 5 data sets. All these datasets are 
continuous. Decimal point precision of attribute domain values is taken as 2.  

Table 2. Description of the Data sets 

Data set |�| |�| # ������� |�∗| |�∗| 
Iris 150 4 3 7500   119 

Glass 214 9 6 16870   755 

Wine 178 13 3 15667   1262 

Liver-disorders 345 6 2 29000   322 

Ecoli 336 7 8 41078   356 

 

Information table �∗ is constructed from these datasets. �∗ is given as input to MD-Heuristics approach and 
best set of cuts are generated. These set of cuts are further reduced using the GA with the proposed 
chromosome representation and fitness function. GA is implemented using MATLAB's gatool. In MATLAB's 

gatool minimization of – 
(�ℎa�) is used to achieve maximization of 
(�ℎa�). Table 3 shows the number of � − �
DEFEGHDG and � − F//H�m�FnPH cuts, set of cuts and time taken for execution. 

Table 3. Experiment results of 2-step Discretization approach 

Data set # �¡¢� Set of cuts Run time 
 (in seconds) 

Iris 7 �(��, 6.05), (��, 2.25), (��, 3.05), (��, 2.45), (��, 4.95), (�¨, 1.65), (�¨, 1.75)� 2.6 

Glass 17 �(��, 12.56), (��, 13.22), (��, 13.37), (��, 14.04), (��, 0.16), (��, 3.42), (��, 3.5), (��, 3.6), (��, 3.82), (�¨, 1.24), (�¨, 1.42), (�«, 71.54), (�«, 72.76), (�«, 72.9), (�¬, 8.46), (�¬, 9.25), (�­, 0.02)� 

7.2 

Wine 16 �(��, 12.56), (��, 13.57), (��, 1.79), (��, 3.14), (��, 2.41), (�¨, 15.55), (�¨ , 19.55), (�¨, 22.25), (�«, 86.5), (�«, 102.5), (��, 2.99), (�­, 1.5), (��®, 5.29), (���, 1.06), (���, 2.95), (���, 673.5)� 
 

3.6   

Liver-disorders 20 �(��, 84.5), (��, 87.5), (��, 90.5), (��, 93.5), (��, 57.5), (��, 65.5), (��, 74.5), (��, 82.5), (��, 93.5), (��, 17.5), (��, 22.5), (��, 35.5), (�¨, 18.5), (�¨, 21.5), (�¨, 24.5), (�¨, 44.0), (�«, 22.5), (�«, 35.5), (�«, 56.5), (��, 3.5)� 
 

6.5 

Ecoli 27 �(��, 0.18), (��, 0.38), (��, 0.46), (��, 0.5), (��, 0.62), (��, 0.66), (��, 0.72), (��, 0.8), 9.7 
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(��, 0.29), (��, 0.4), (��, 0.44), (��, 0.52), (��, 0.58), (��, 0.77), (��, 0.79), (�«, 0.38), (�«, 0.44), (�«, 0.5), (�«, 0.52), (�«, 0.54), (�«, 0.6), (�«, 0.64), (��, 0.48), (��, 0.74), (��, 0.74), (�¬, 0.36), (�¬, 0.46)� 
 

 

 

2-step Discretization approach can be compared with the discretization approach described in [1]. 
Discretization in [1] is also done using GA with optimization strategies like elitism and penalty. Comparison of 
discretization execution times is shown in Table 4. Comparison results show that the proposed 2-step 
discretization approach finds � − �
DEFEGHDG and � − F//H�m�FnPH set of cuts in reduced time.  

Table 4. Comparison of Run times 

Data set 2-step discretization 
(in seconds) 

Discretization approach 
described in [1] 
 (in minutes) 

Iris 2.6 2 

Glass 7.2 5 

Wine 3.6 4 

 

Conclusion 

In this paper we have proposed a 2-step discretization approach to discretize continuous datasets. 
Discretization is achieved based on discernibility relations of Rough Set Theory. Instead of directly considering 
all the possible basic set of cuts for optimization using Genetic Algorithm, in 2-step discretization approach we 
have taken the set of cuts returned from MD-heuristics approach, and have reduced the superfluous cuts 
among them, using GA. GA is applied by designing chromosome and fitness function that preserve object 
discernibility. Experimental results on UCI Machine Learning Repository datasets shows that the entire 
discretization process is completed in reduced time when compared to the discretization approach described 
in [1].  
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