
AN EMPIRICAL SURVEY ON USEFULNESS OF COMMENTS IN SOFTWARE

PROGRAMMING LANGUAGES

Manjot Singh Ahuja, Surender Dhaiya, Neha Sadana

{manjot.ahuja, surendahiya, sadananeha25}@gmail.com

Computer Science and Engineering Department

Shivalik Institute of Engineering and Technology, Aliyaspur (Ambala)

ABSTRACT

Each programming language and script has

its own coding conventions. There are

numerous general points that can be

followed to ensure that the code is well

organised so that it can be easily

understood for maintenance and

reengineering. These guidelines are helpful

in formalising code so that interpretation,

reuse, maintenance, re-engineering and

reverse-engineering of code become

easier. The source code comment gives

high-level advice for software developer.

This paper presents an overview of

conventions and importance of comments

in source code during development as well

as in maintenance.

Keywords - Code Quality, Source Code,

Source Code Comments, Source Code

Comments Quality

1 Introduction

Source code documentation is the text

which accompanies computer software and

either explains how it operates or how to

use it. Code comments are used to embed

programmer-readable remarks in the

source code of a program. These

annotations are ignorable to compilers and

interpreters. The source code comments

are typically additional artifacts with the

rationale of the ease to comprehension of

source code. The syntax and rules for

comments diverge and are typically

defined in a programming language

specification. While developing software it

is important that you include the clear

documentation as well as the code

comments to make it further reusable. This

documentation will take form of external,

internal documentation, comments, and

readme files.

External documentation - Explains the

methods of software development.

Internal documentation - Explains the way

to implement the code.

Comments - Comments must be added to

the code to explain the implementation

details of the source code. It is mandatory

to avoid adding of obvious or lengthy

information. Prior to the project

development, we should agree on how

frequent comments should be and their

location, format and length in the file.

These conventions may need to be agreed

on for block, single-line and end-of-line

comments.

Readme file - Every package should have

the readme file unfolding the purpose and

functionality of the software and

information on exterior dependencies.

2 Taxonomy of the Comments

2.1 Prefacing

This is the practice of starting each

programming with a block comment that

briefly describes it. Ideally, the preface

should not be overly long, and it should

summarize the purpose of its programming

unit. The advantages of prefacing are

twofold, it is a useful tool for any

maintainers who may need to understand

International Journal of Computing and Corporate Research
ISSN (Online) : 2249-054X
Volume 3 Issue 4 July 2013

Manuscript ID : 2249054XV3I4072013-04

the code in the future; but it can also be

beneficial for the developer writing the

code, helping to concretize the purposes in

his mind. In addition, best practices have

always stipulated that programming units

should be single-purpose, and in writing

the prefacing comments, the developer

will catch himself if he is about to flout

this rule.

2.2 Comment-Driven Development

This is a programming methodology that

encourages the developers to start out

complex projects by building a wireframe

of their procedures using little more than

comments and basic pseudo code to

describe each step of the algorithm. CDD

help developers to encounter and work out

problems before they write a line of actual

code; it also has the advantage of helping

clearly delineate the routes between the

high-level problem and the many small-

picture fractals it is composed of. The

comments created using CDD may survive

the process of actual coding and

development as line comments throughout

the programming unit; however, it

sometimes make sense to delete them after

their purpose has been served.

3 Comments Style and Format

• Style (inline/block)

• Parse rules (ignored/interpolated/stored

in memory)

• Recursivety (nestable/non-nestable)

• Uses (docstrings/throwaway

comments/other)

Inline Comments - Inline comments are

generally those that use a newline

character to indicate the end of a comment,

and an arbitrary delimiter or sequence of

tokens to indicate the beginning of a

comment.

Examples: // (C++, C#, D, Go, Java,

JavaScript, Object Pascal (Delphi),

Objective-C, PHP), # (bash, Cobra, Perl,

Python, Ruby, Windows PowerShell, PHP,

Maple), % (TeX, Prolog, MATLAB,

Erlang, S-Lang, Visual Prolog), etc..

Block comments - Block comments are

generally those that use a delimiter to

indicate the beginning of a comment, and

another delimiter to indicate the end of a

comment. In this context, whitespace and

newline characters are not counted as

delimiters.

Examples: /* */ (C, C++, C#, D, Go, Java,

JavaScript, Objective-C, PHP, Visual

Prolog, CSS), { } (Object Pascal (Delphi),

Pascal), etc.

4 Approaches and Protocols for

Comments

Commenting styles should be governed by

a company’s development guidelines and,

even within these guidelines, there is often

enough wriggle room for individual style

and subjectivity. The following are few

rules and practices that should be followed

when commenting code.

To include a preface: It need not be a long

essay, in fact, it should not be long.

However, it is important to include one.

Apart from focusing the developer’s mind

around the task and assisting any

maintainer that may come along in the

future, prefaces can serve an important,

additional function. Some languages, most

notably Java, but also PHP include API-

generating functionality: Javadoc and

PHPdoc, respectively. PL/SQL presents us

with no such nicety, but if all

programming units contain prefacing

comment blocks, then we can write of our

own quite easily.

Include a revision history: Anyone

maintaining your code in the future will

thank you for including a revision history.

The identity of the developer who has

made a particular change is not so

important, however, it may one day be

International Journal of Computing and Corporate Research
ISSN (Online) : 2249-054X
Volume 3 Issue 4 July 2013

Manuscript ID : 2249054XV3I4072013-04

vital to know when a change was made

and why.

Use line comments: A good rule is to use a

single line comment at the start of each

logical block describing what it does. If, in

the future, someone needs to maintain your

code, they should not need to read every

line of code to pinpoint the section they

intend to edit; in fact, they should be able

to navigate your whole procedure or

package without reading a single line of

code outside the actual section they are

looking for. A good developer, unlike a

good novelist, is one whose best work is

never read in full.

Never depend on your memory: Writing

something complicated? Comment it.

Code, algorithms and assumptions that are

perfectly clear at the time of writing, can

quickly fester in a morass of spaghetti

code with time.

Comment while maintaining code: If you

are forced to wade through old poorly-

commented or uncommented code that you

or another developer has written, do not

leave it as you found it. Comment it.

While you may not be responsible for the

way you find code, you are responsible for

the way you leave it.

Keep it simple: Comments should be

easily readable. Keep them as short as

possible, and as plain as possible. Unless

absolutely necessary, do not include any

code in your comments.

Good and meaningful comments make

code more maintainable. However,

• Do not write comments for every line

of code and every variable declared.

• Use // or /// for comments. Avoid using

/* … */

• Write comments wherever required.

But good readable code will require

very less comments. If all variables

and method names are meaningful, that

would make the code very readable

and will not need many comments.

• Do not write comments if the code is

easily understandable without

comment. The drawback of having lot

of comments is, if you change the code

and forget to change the comment, it

will lead to more confusion.

• Fewer lines of comments will make the

code more elegant. But if the code is

not clean/readable and there are less

comments, that is worse.

• If you have to use some complex or

weird logic for any reason, document it

very well with sufficient comments.

• If you initialize a numeric variable to a

special number other than 0, -1 etc,

document the reason for choosing that

value.

5 Literature Survey

In early 1980s Donald Knuth suggested

literate programming [5], in order to

combine the process of software

documentation with software

programming. Comments are ignored by

compiler, so, in order to differentiate

source code and documentation, a specific

documentation or programming syntax has

to be used. Programmers typically lack the

appropriate tools and processes to create

and maintain documentation, it has been

widely considered as an unfavorable and

labor-intensive task within software

projects [6].

For generating comments in JAVA,

Javadoc [7] is an automated tool that

generates API documentation in HTML

using Java source code and source code

comments. Javadoc comments added to

source code are distinguishable from

normal comments by a special comment

syntax (/**).

In [8], Khamis et al. provided an analysis

tool called JavadocMiner for analyzing the

quality of inline documentation. Thereby,

the authors mainly focused on inline-

documentation in the form of Javadoc

comments. By using a set of heuristics,

International Journal of Computing and Corporate Research
ISSN (Online) : 2249-054X
Volume 3 Issue 4 July 2013

Manuscript ID : 2249054XV3I4072013-04

they aimed to evaluate both the quality of

the language and the consistency between

source code and its comments. The quality

of the language was measured with

heuristics such as counting the number of

tokens, nouns, and verbs, calculating the

average number of words, or counting the

number of abbreviations. With heuristics

including the Fog index or the Flesch

reading ease level, the authors targeted the

readability of comments. For detecting

inconsistencies between code and

comments, this approach computes the

ratio of identifiers with Javadoc comments

to the total number of identifiers and

checked whether all aspects of a method

such as parameter or return type are

documented. The heuristics are grouped

into two categories, Internal (Natural

Language quality only) and code/comment

consistency.

Lehman and Belady in their paper [9]

surveyed that with millions of lines of

code written every day, the importance of

good documentation cannot be overstated.

Well-documented software components

are easily comprehensible and therefore,

maintainable and reusable. This becomes

especially important in large software

systems.

Storey et al [10] focused on study to

explore the role embedded task

annotations play in source code. They

gathered data from a survey among

software developers, from code analysis of

open source projects, and from personal

interviews. They found that task comments

are frequently used in software

development with the majority of

comments containing TODO tags. TODO

comments mainly serve the purpose of

documenting small tasks when opening a

new bug report. However, there is the

potential risk that developers never revisit

task comments. Based on this analysis, the

authors suggested several implications for

tool designer, such as providing altering

mechanism for task views, supporting

meta data within task comments, or

introducing ad-hoc task clean-up wizards.

In addition to [10], Ying et al [11] also

investigated the role of task comments.

The authors interpreted the intention of

task comments, resulting in a detailed

categorization of task comments such as

bookmarks on past tasks, current tasks,

future tasks, pointers to change requests,

or tasks used for communication.

However, there was no automatic or semi-

automatic assessment of task comment

quality.

Fluri et al. [12] concluded that code and

comments are not necessarily get updated

and evolve at the same time. Therefore, the

authors investigated how code and

comments evolve. They used a mapping

between code and comments to observe

their co-evolution over multiple versions

of the system. The authors conducted a

case study on three different Java projects.

The case study, in contrast, revealed that

comment change is triggered by source

code change; about 97% are done in the

same revision as the source code change.

Furthermore, approximately 70% of

comments are mapped to one of the

following seven types of source code

entities: attributes, class and method

declarations, control structures, loops,

method calls, and variable declarations.

The authors also evaluated the ratio

between comments and source code over

time to give a trend analysis whether

developers increase or decrease their effort

on code commenting. However, the results

differed greatly among the three test cases

such that no unique answer can be given.

In particular, the authors did not

differentiated between different types of

comments, e. g., lines of commented out

code were also counted in the ratio

between comments and source code.

Sundbakken [13] assessed the comment

density of maintenance phase code

contributions to components of four open

source projects. He observes that

consistent commenting correlates highly

with maintainability of components. The

measured comment density ranged from

0.09% for poorly maintainable

International Journal of Computing and Corporate Research
ISSN (Online) : 2249-054X
Volume 3 Issue 4 July 2013

Manuscript ID : 2249054XV3I4072013-04

components to 1.22% for highly

maintainable components. In contrast to

[13], in a study on the comment density of

a closed-source compiler project in its

maintenance phase, Siy and Votta found a

consistent comment density of around 50%

[14]. In another study of 100 Java open

source classes, Elish and Offutt found an

average comment density of 15.2% with a

standard deviation of 12.2% [15]. Fluri et

al. presented an approach for assessing the

comment density of software projects and

demonstrated the approach using three

selected open source projects [12]. They

also observed that new code is barely

commented, implying that comment

density decreases over time.

Oliver and Dirk in their paper [16]

concluded that commenting source code is

a consistent practice of active open source

projects. It has led to an average comment

density of about 19%. This density is

maintained by dedicated commenting

activities as well as in regular on-going

programming activities. Also, they have

found that the average comment density is

independent of team size and project size,

suggesting that as teams and projects get

larger, successful open source projects

maintain their commenting discipline.

However, the average comment density is

not independent of a project’s age but

rather declines with an aging project. That

decline is statistically significant; however,

it is rather small and thus has limited

practical implications.

6 Limitation

Source code comments are essential for

understandability of code and less work

has been done on the qualitative analysis

of comments. If we put aside quality of

source code comments, nearly no work has

been done related to understandability of

source code with respect to comments.

And works done by authors till now are

limited to any specific language, no model

has been proposed that will get fit to many

programming languages.

Conclusion

Technical experts documented the varying

viewpoints on whether and when

comments are appropriate in source code.

Some commentators avow that source

code should be written with few

comments, on the basis that the source

code should be self-explanatory. Others

suggested that code should be extensively

commented. These views assert that

excessive comments are neither beneficial

nor harmful, what matters is that they

should be correct and kept in sync with the

source code, and omitted if they are

superfluous, excessive, difficult to

maintain or otherwise unhelpful. It is very

important to specify the comments in the

software source code very carefully so that

it will be understandable, readable as well

as modifiable. It also reduces maintenance

cost, helps in maintainability,

understandability, software reusability, re-

engineering and in reverse-engineering.

This becomes especially important in large

software systems. As we have seen in the

earlier section that there are many

categories of documentation and

comments. Some suggested ideas for in-

line comments, some for block-comments,

some for specific language, and some

suggested where comments should be

added and where not to add, some talked

about comment density.

Since in-line comments come in contact

with various stakeholders of a software

project, it needs to effectively

communicate the purpose of a given

implementation to the reader. So research

demands quality of in-line comments and

we are trying to achieve the same by

taking other parameters in consideration.

And our work will not be limited to any

specific programming language; we will

try to implement it on variety of

programming languages and will study

how quality of source code comments

effect understandability.

International Journal of Computing and Corporate Research
ISSN (Online) : 2249-054X
Volume 3 Issue 4 July 2013

Manuscript ID : 2249054XV3I4072013-04

References

[1] Penny Grubb, Armstrong Takang

(2003). Software Maintenance:

Concepts and Practice. World

Scientific. pp. 7, 120–121. ISBN 981-

238-426-X.

[2] Vermeulen, Al (2000). The Elements

of Java Style. Cambridge University

Press. ISBN 0-521-77768-2.

[3] "Using the right comment in Java".

Retrieved 2007-07-24.

[4] W. R., Dietrich (2003). Applied

Pattern Recognition: Algorithms and

Implementation in C++. Springer.

ISBN 3-528-35558-1. offers

viewpoints on proper use of comments

in source code. p. 66.

[5] Knuth, D.E.: Literate Programming.

The Computer Journal 27(2) (1984)

97{111

[6] Brooks, R.E.: Towards a Theory of the

Comprehension of Computer

Programs. International Journal of

Man-Machine Studies 18(6) (1983)

543{554

[7] Kramer, D.: API documentation from

source code comments: a case study of

Javadoc. In: SIGDOC '99: Proceedings

of the 17th annual international

conference on Computer

documentation, New York, NY, USA,

ACM (1999) 147{153

[8] Ninus Khamis, Rene Witte, and Jurgen

Rilling. Automatic Quality Assessment

of Source Code Comments:

the JavadocMiner. In Proceedings of

the Natural Language Processing and

Information Systems, and 15th

International Conference on

Applications of Natural Language to

Information Systems, NLDB '10, pages

68-79. Springer-Verlag, 2010.

[9] Lehman, M.M., Belady, L.A., eds.:

Program evolution: processes of

software change. Academic Press

Professional, Inc., San Diego, CA,

USA (1985)

[10] Margaret-Anne Storey, Jody Ryall,

R. Ian Bull, Del Myers, and Janice

Singer. TODO or To Bug: Exploring

How Task Annotations Play a Role in

the Work Practices of Software

Developers. In Proceedings of the 30th

International Conference on Software

Engineering, ICSE '08, pages 251{260.

ACM, 2008.

[11] Annie T. T. Ying, James L. Wright,

and Steven Abrams. Source code that

talks: an exploration of Eclipse task

comments and their implication to

repository mining. In Proceedings of

the 2005 International Workshop on

Mining Software Repositories, MSR

'05, pages 1-5. ACM, 2005.

[12] Beat Fluri, Michael Wursch, and

Harall Gall. “Do Code and Comments

Co-Evolve? On the Relation Between

Source Code and Comment Changes.”

In Proceedings of the 14
th

 Working

Conference on Reverse Engineering

(WCRE2007). Page 70-79.

[13] Marius Sundbakken. Assessing the

Maintainability of C++ Source Code.

M.S. Thesis,Washington State

University, 2001.

[14] Harvey Siy, Lawrence Votta.

“Does the Modern Code Inspection

have Value?” In Proceedings of the

17
th

 IEEE International Conference on

Software Maintenance (ICSM 01).

IEEE Press, 2001. Page 281-290.

[15] Mahmoud Elish, Jeff Offutt. “The

Adherence of Open Source Java

Programmers to Standard Coding

Practices.” In Proceedings of the 6th

IASTED International Conference

Software Engineering and

Applications. Page 193-198.

[16] http://www.cs.uoregon.edu/events/i

cse2009/images/postPosters/The%20C

omment%20Density%20of%20Open%

20Source%20Software%20Code.pdf

“The Comment Density of Open

Source Software Code”

International Journal of Computing and Corporate Research
ISSN (Online) : 2249-054X
Volume 3 Issue 4 July 2013

Manuscript ID : 2249054XV3I4072013-04

