

AN EMPIRICAL REVIEW ON FACTORS AFFECTING REUSABILITY OF

PROGRAMS IN SOFTWARE ENGINEERING

Neha Sadana, Surender Dhaiya, Manjot Singh Ahuja

Computer Science and Engineering Department

Shivalik Institute of Engineering and Technology, Aliyaspur (Ambala), Haryana, India

Abstract

Software engineering deals with the

development of software systems and to

reduce the cost and improve the

development process. We make reuse of

software in order to reduce effort, time and

cost and thus it increases the productivity

and quality of software programs. To

check whether software components can

be reused or not we measure reusability of

the components. Reusability depends on

number of factors. Using some of these

factors reusability metric is formed to

measure software component reusability.

But software metric research area lacks

standardization and this discourages metric

usage and real applicability of these

metrics in development and maintenance

phase. This paper presents a survey on

factors affecting reusability and reusability

metrics to guide our researchers and

developers for quality software

development.

Keywords: Metrics, Complexity, Object-

oriented, Software quality; Software Reuse

and Software Metrics.

1 Introduction

As the size of the software system

increased, new approaches of software

development came into picture. These

approaches include the object-oriented

encoding, component-based development,

aspect-based programming. But there is a

need to reduce the effort, time and cost to

build software so that productivity and

quality of software programs can increase.

Software reuse has been a cherished goal

for software engineers and is viewed as a

means to reduce development costs and to

improve quality. Software reuse is use of

existing software to build new software.

Reusable software can be codes, templates,

functions, procedures, objects, routines or

framework including various documents.

Initial investment is required to start the

reuse process, but when reuse process is

matured in the new software system it

decreases the implementation time. Today,

most of the applications are developed by

using some existing libraries, codes, open

sources etc. Software components are

ready to use programming codes or

controls that excel the code development.

A software system is the collection of

different software modules or the

components that are integrated as the

whole system. With the inclusion of

software components the complete life

cycle of the software is changed.

Reusability is the extent to which a

segment of source code can be used again

to add new functions with new slight or no

modification. To measure reusability, we

need software metric. Software metrics is

concerned with measurements of

reusability of software components.

Software metric can be broadly classified

into three categories-

Product Metric- It is used in

documentation, design, performance,

cyclomatic complexity for testability,

coupling factor for maintainability.

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 3 Issue 4 July 2013

Manuscript ID : 2249054XV3I4072013-05

Process Metric- Its emphases are on

software development process such as

development time, methodology used and

quality assurance techniques.

Resource Metric- Its emphasis are on

human, hardware, software resource such

as developers skill level, hardware

reliability, software component quality.

1.1 Components Based Development

As the world of software development has

evolved rapidly in the last decade,

Component-Based Development has

evolved from previous design and

programming paradigms. This approach

advocates the acquisition, adaptation, and

integration of reusable software

components, including commercial-off-

the-shelf (COTS) products, to rapidly

develop and deploy complex software

systems with minimum engineering effort

and reduced cost [1]. According to the

Software Engineering Institute (SEI), the

use of commercial off-the-shelf (COTS)

products as elements of larger systems is

becoming increasingly commonplace, due

to shrinking budgets, accelerating rates of

COTS enhancement, and expanding

system requirements. COTS components

also provide greater reliability as

compared to custom-made components

since they are refined by substantial field-

testing. Voas [2] presented a summary of

the advantages that can be gained by

developing a system using COTS

components:

Functionality is instantly accessible to the

developer.

Components may be less costly than those

developed in-house.

The component vendor may be an expert in

the particular area of the component

Functionality.

As COTS are used for reuse of

components in software, now, we need to

determine the degree of reusability of the

component. For this many reusability

metrics are proposed till date, out of these

metrics some are used for object oriented

and some are used for procedure oriented.

In this work we are trying to overcome

these problems by proposing metric for

both procedure and object oriented

approaches.

2. Factors affecting Reusability of

components

After studying number of papers and

documents we found that following are the

factors which affect the reusability of

components:

Fig1: Factors affecting Reusability Measurement

Availability – The availability of a

software component can be determined

that how easy and fast it is to retrieve. For

measuring the availability of a component

a generic, qualitative and subjective,

metric can be used. The value obtained by

the metric is placed on an ordinal scale and

normalized to fit in the overall calculation

of reusability of that component.

Documentation - A good documentation

can make the software component more

Factors

affecting

Reusability
Measurement

Documentation

Efficiency

Expandability

Generality

Maintainability

Adaptability

Availability

Complexity

Completeness

Correctness

Cohesion

Coupling

Modularity

Portability

Price

Quality

Reuse

Reliability

Testability

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 3 Issue 4 July 2013

Manuscript ID : 2249054XV3I4072013-05

reliable since it makes it easier to

understand. Furthermore, it should contain

the legal terms and conditions and thus

make clear if it is licensed for reuse in the

context of the developer or if any legal

issues may arise. It can be determined by

four different attributes: amount, quality,

completeness of documentation and

availability of appropriate legal terms and

conditions.

Complexity - The complexity of a software

component determines how usable it is

(i.e., easy to understand and to maintain)

and how easy it is to adapt the software

component in the new context of use. The

complexity of a component can be

measured by the size of the component,

no. of loops, nested computation etc. If the

Complexity of the component increases,

more difficult is to reuse that component.

Complexity metric depends on classes,

methods and parameters of the component.

Quality - The quality of a component

describes how good it fulfills requirements

and also how error-free and bug-free it is.

If a component is error-free and bug-free,

it can be used again. Quality of a

component can be accessed via four

attributes: the number of bugs, the number

of tests performed, availability of test

cases, and an independent rating and

certification.

Maintainability - The maintainability of a

software component directly determines

how easy it is to adjust the component to a

new context. A component must be able to

fit its behavior according to changes in the

environment or in parts of system to be

used again.

Price - The price of the software

component determines how expensive it is

to reuse. A generic, objective and

quantitative metric can be evaluated,

expressed through a predefined currency.

Completeness - The degree to which the

component implements all required

capabilities.

Correctness - The ability of a component

to produce specified outputs when given

specified inputs, and the extent to which

they match or satisfy the requirements.

Efficiency - The degree to which a

component performs its designated

functions with minimum consumption of

resources and less delay in execution time.

Higher the efficiency of component higher

will be the reusability of components.

Generality - The degree to which a system

or component performs a broad range of

functions.

Modularity – The degree to which a

system or computer program is composed

of discrete components (modules) such

that a change to one component has

minimal impact on other components.

Each component contains everything

necessary to execute one aspect of desired

function. High modularity leads to high

reusability.

Portability- The extent to which a module

originally developed on one computer or

operating system can be used on another

computer or operating system. If a

component is portable, it can run on

different platforms which increase the

probability of component to be reusable.

Reliability - The ability of a component to

perform its required functions under stated

conditions for a specified period of time.

Cohesion - The degree to which the

functions or processing elements within a

module are related or bound together.

Cohesion increases if the methods in the

module perform same function. High

cohesion leads to high reusability of

component.

Coupling - The degree that modules are

dependent upon each other in a computer

program. Tight coupling between

components reduces reusability of

components. In tightly coupled modules, a

change in one module forces a change in

other modules which leads to extra effort

and time to assemble these components.

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 3 Issue 4 July 2013

Manuscript ID : 2249054XV3I4072013-05

Hence, these components cannot be used

as reusable components.

Expandability - The extent to which a

component allows new capabilities to be

added and existing capabilities to be easily

tailored to user needs. It measures the level

of effort and cost required to implement

the system with new capabilities. If the

component is easily expandable, it can be

easily reusable.

Testability - The ability to evaluate

conformance with requirements. The

testability of the component is critical

when reusing the software. A well-defined

set of test cases aids in quickly assessing

the components use in a new environment.

The testability of a component is defined

in part by its complexity, as well as its

size.

After studying various factors affecting

reusability, it can be concluded that

components must be well defined and

understandable by the software engineers

and encapsulate as much implementation

detail as possible. Fault density, code-

related problem counts, defect density, and

efficiency are some of the metrics used for

assessing existing components for

reusability. The longer a component has

been in actual use; higher will be the

confidence of the component's correctness.

Cohesion and Coupling are the most

important factors to measure the

reusability of component. Cohesion and

Coupling are complementary to each other.

High Cohesion leads to Low Coupling

between modules, hence increases

reusability. To measure the reusability of

component we need to calculate the

reusability metric.

4. Related Work

Reusability is the measure of extent upto

which we can make reuse of component.

For the sake of practicality, reusability

metric can be separated into two

categories: one for white-box, which allow

to look into the code of the components

and one for black-box (where merely

interface and documentation of a

component are available) reusability. This

separation helps to distinguish the different

nature of metrics for these two paradigms.

Prieto-Diaz and Freeman checked white-

box reuse and identified some program

attributes for evaluating reusability [3].

Attributes used are: Program Size,

Program Structure, Program credentials,

Programming Language, and Reuse

Experience.

Caldiera and Basili [4] in 1991 defined

three main attributes for assessing the

reusability of components – reuse costs,

functional usefulness and quality of

components.

Seven years later, Barnard [5] suggested a

composite metric for reusability of object-

oriented software, which was derived from

two empirical experiments. As foundation,

again a variety of readily available

software metrics have been used. Based on

the experiments, those metrics that were

related best to reusability have been

selected. [5] Focused on the Simplicity,

Generosity and Understandability of class

interfaces, methods and attributes.

Around the same time, Mao et al. [6]

investigated the effects of inheritance,

coupling and complexity on the reusability

of classes in object-oriented software. Two

years later, Lee and Chang [7] proposed

another set of metrics for measuring the

reusability and maintainability of object-

oriented software. In 2001, Cho et al. [8]

suggested metrics for component

complexity, customizability, reusability

and reuse. Component Reusability is

determined by the functionality that the

software components provide for their

domain: it is the ratio between the number

of interface methods in the component that

provide common functions in the domain,

and the total number of interface methods

in the component. The more the common

functions a component provides, more its

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 3 Issue 4 July 2013

Manuscript ID : 2249054XV3I4072013-05

reusability is considered. Also in 2001

Etzkorn et al. [9] have published a model

capturing reusability of object-oriented

legacy software. They suggested a

comprehensive metric suite covering

different aspects of the reusability of

individual classes. It is defined as the sum

of metrics for Modularity, Interface Size,

Documentation and Complexity of a class,

each equally weighted.

Four years later, Bhattacharya and Perry

[10] suggested reusability metrics that

measure how well a component fits in a

predefined architectural context.

In 2008, Gui and Scott [11] suggested

revised formulas for established coupling

and cohesion metrics in order to measure

the reusability of Java components. Gill

and Sikka [12] proposed five new metrics

for better assessing reuse and reusability in

object-oriented software development. The

metrics are Breadth of Inheritance Tree,

Method Reuse per Inheritance Relation,

Attribute Reuse per Inheritance Relation,

Generality of Class and Reuse Probability.

Reusability of a component can be

measured by Coupling or Cohesion

metrics. Number of authors has proposed

metrics for coupling and cohesion.

Coupling metrics

Page Jones [13] introduced the concept of

tramp coupling, where data may flow

between many intermediate modules from

where data is defined to where data is

used. This metric measures the coupling

among many modules instead of just two

modules.

Classification produced by Myers [14] is

used by Fenton and Melton [15].They

proposed the following metric as a

measure of coupling between two

components x and y:

C(x,y) = i +n/(n+1)

Dhama [16] proposed a coupling metric

that measures the coupling of an individual

component C, which is equal to:

C= 1/ (i1 +

q612+u1+q2u2+g1+q8g2+w+r)

Cohesion metrics

Cohesion metrics measure how well the

methods of a class are related to each

other. A cohesive class performs one

function.

LCOM1 was introduced by Chidamber &

Kemerer [17], and it was calculated as

follows:

Take each pair of methods in the class. If

they access disjoint sets of instance

variables, increase P by one. If they share

at least one variable access, increase Q by

one.

LCOM1=P-Q, if P>Q LCOM1=0

otherwise

LCOM1 = 0 indicates a cohesive class.

Further two additional metrics have been

proposed: LCOM2 and LCOM3. A low

value of LCOM2 or LCOM3 indicates

high cohesion and a well-designed class

likely to have high reusability.

The higher TCC and LCC, the more

cohesive and thus better the class. For

TCC and LCC we only consider visible

methods. A method is visible unless it is

Private. A method is visible also if it

implements an interface or handles an

event.

TCC = NDC/NP

LCC = (NDC+NIC) / NP

6. Limitations

Most of the metrics proposed till date

considers direct coupling only. If coupling

was considered, values were considered on

the bases that coupling exists or not. No

in-between values are taken, like upto

what extent coupling is there. There is no

metric considering both procedure oriented

and object oriented approach. Many works

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 3 Issue 4 July 2013

Manuscript ID : 2249054XV3I4072013-05

also face lack of validation, or week

validation criteria.

Conclusion

This paper presents a survey on software

code metrics, providing an overview on

what has been done in recent years. It will

also help researchers to get a

comprehensive view of the direction of

works in area of software reusability

measurement. Most of the earlier metrics

were validated in theory, metrics range

definition. Reports do not show the

success range of the metric. Experiments

were done on few data set, poor details in

software metrics reports, many reports

have few information about the metric

usage. In this survey we extracted number

of factors on which reusability depend and

based on this survey new metric will be

constructed to analyze source code

components quality in context of

reusability. And we will try to construct a

metric for both procedure and object

oriented approach.

References

[1] Tran Vu N. and Liu Dar-Biau.

Application of CBSE to Projects with

Evolving Requirements – A Lesson-

learned.

[2] Voas J., COTS Software: the

Economical Choice?, IEEE Software,

volume 15, issue 2,1998.

[3] Prieto-Diaz, Ruben Freeman, P., 1987

“Classifying Software for Reusability”,

IEEE Software

[4] G. Caldiera and V.R. Basili,

Identifying and qualifying reusable

software components, IEEE Computer,

vol.24, Feb.1991.

[5]J. Barnard, A new reusability metric for

object-orientedsoftware, Software Quality

Journal, vol. 7, Jan. 1998, pp.35-50.

[6] Y. Mao, H. Sahraoui, and H. Lounis,

Reusability HypothesisVerification using

Machine Learning Techniques: A

CaseStudy, Proceedings of the

International Conference onAutomated

software engineering, IEEE, 1998, pp.84-

93.

[7] Y. Lee and K.H. Chang, Reusability

and maintainabilitymetrics for object-

oriented software, Proceedings of the

38thannual on Southeast regional con-

ference (ACM-SE 38),ACM, New York,

NY, USA, 2000, pp.88-94.

[8] E.S. Cho, M.S. Kim, and S.D. Kim,

Component Metrics toMeasure

Component Quality, Proceedings of the

Eighth Asia-Pacific on Software

Engineering Con-ference (APSEC

'01),IEEE Computer Society, Washington,

DC, USA, 2001,pp.419-426.

[9] L.H. Etzkorn, W.E. Hughes Jr., and

C.G. Davis, Automatedreusability quality

analysis of OO legacy

software,Information and Software Techn.,

vol.43, 2001, pp. 295-308.

[10] S. Bhattacharya and D.E. Perry,

Contextual reusabilitymetrics for event-

based architectures, Intern. Symp.

onEmpirical Software Engineering, 17-18

Nov. 2005, pp.459-468.

[11] G. Gui and P.D. Scott, New Coupling

and Cohesion Metricsfor Evaluation of

Software Component Reusability, Proc.

of the Intern. Conf. for Young Computer

Scientists, 2008,pp.1181-1186.

[12] N. Gill and S. Sikka, Inheritance

Hierarchy Based Reuse &Reusability

Metrics in OOSD, International Journal

onComputer Science and Engineering

(IJCSE), vol.3, June2011, pp.2300-2309.

[13] Page Jones , The Practical guide to

structured System design, YOURDON

press , newyork NY 1980.

[14] G. Myers, Composite/Structured

Design. Van Nostrand Reinhold, 1978.

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 3 Issue 4 July 2013

Manuscript ID : 2249054XV3I4072013-05

[15] N. E. Fenton and S. L. Pfleeger,

Software Metrics: A Rigorous & Practical

Approach. 2nd edn. Reading, 1997.

[16] H. Dhama, ―Quantitative Models of

Cohesion and Coupling in Softwareǁ,

Journal of System and Software,

9(1)(1995), pp. 65–74.

[17] Shyam R. Chidamber, and Chsis F.

Kemerer, ―A Metrics Suite For Object

Oriented Design,ǁ IEEE Transactions On

Software Engineering, 20(6)(1994), pp.

476– 493.

[18] Hutches and V. R. Basili, ―System

Structure Analysis: Clustering with Data

Bindingsǁ, IEEE Transactions on Software

Engineering, 11(8)(1985), pp. 749–757.

[19] W. Li and S. Henry, ―Object-

Oriented Metrics that Predict

Maintainabilityǁ, Journal of Systems and

Software, 23(2) (1993), pp. 111–122.

[20] J. Chen, and J. Lu, ―A New Metric

for Object-Oriented, Designǁ, Information

and Software Technology, 5(4)(1992), pp.

232–239.

[21] Brian Henderson-Sellers, Object-

Oriented Metrics: Measures of

Complexity. New York: Prentice Hall

PTR, 1996.

 [22] Briand, L., Devanbu, W., Melo W.;

(1997), "An investigation into coupling

measures for C++", 19th International

Conference on Software Engineering,

page(s): 412-421, Boston, USA.

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 3 Issue 4 July 2013

Manuscript ID : 2249054XV3I4072013-05

