
International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 2 March 2014

International Manuscript ID : 2249054XV4I2032014-16

AN EMPIRICAL REVIEW ON ASSOCIATIVE RULE MINING AND

CLASSIFICATION USING ASSORTED TECHNIQUES

Anuradha

Research Scholar

Department of Computer Science and Applications

Kurukshetra University, Kurukshetra

Dr. Chanderkant Verma

Assistant Professor

Department of Computer Science and Applications

Kurukshetra University, Kurukshetra

ABSTRACT

Association rule mining and standards, initially presented in 1993, are utilized to distinguish connections around a

set of things in a database. These connections are not dependent upon innate properties of the information

themselves (as with practical conditions), but instead dependent upon co-event of the information things.

Association principles are additionally utilized for different requisitions, for example, expectation of disappointment

in telecommunications arranges by distinguishing what occasions happen before a disappointment. The vast majority

of our attention in this paper will be on bushel market dissection, however in later segments we will take a gander at

different provisions too. Acquaintanceship guidelines are a standout amongst the most investigated zones of

information mining and have as of late accepted much consideration from the database group. They have ended up

being very convenient in the promoting and retail groups and other more various fields. In this paper we give a

review of acquaintanceship guideline research. The target of this paper is to give a careful review of past exploration

on affiliation principles.

Keywords - Association Rule Mining, Data Mining, Machine Learning, Associative Rule Mining

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 2 March 2014

International Manuscript ID : 2249054XV4I2032014-16

INTRODUCTION

Data mining is a powerful situated of dissection apparatuses and systems utilized within the decision support process.

Notwithstanding, misguided judgments about the part that data mining plays in choice help results can prompt

perplexity about and abuse of these apparatuses and methods. Data Mining is the disclosure of concealed data found

in databases and could be seen as a venture in the learning finding methodology. Information mining capacities

incorporate bunching, grouping, forecast, join investigation and cooperations. One of the most paramount

information mining requisitions is that of mining acquaintanceship guidelines.

A formal statement of the association rule problem is [Agrawal1993] [Cheung1996c]:

Definition 1: Let I ={I1, I2, … , Im} be a set of m distinct attributes, also called literals. Let D be a database, where

each record (tuple) T has a unique identifier, and contains a set of items such that T⊆I An association rule is an

implication of the form X⇒Y, where X, Y⊂I, are sets of items called itemsets, and XI Y=φ. Here, X is called

antecedent, and Y consequent. Two important measures for association rules, support (s) and confidence (α), can be

defined as follows.

Definition 2: The support (s) of an association rule is the ratio (in percent) of the records that contain XU Y to the

total number of records in the database.

Therefore, if we say that the support of a rule is 5% then it means that 5% of the total records contain XU Y.

Support is the statistical significance of an association rule. Grocery store managers probably would not be

concerned about how peanut butter and bread are related if less than 5% of store transactions have this combination

of purchases. While a high support is often desirable for association rules, this is not always the case. For example,

if we were using association rules to predict the failure of telecommunications switching nodes based on what set of

events occur prior to failure, even if these events do not occur very frequently association rules showing this

relationship would still be important.

Definition 3: For a given number of records, confidence (α) is the ratio (in percent) of the number of records that

contain XU Y to the number of records that contain X.

Thus, if we say that a rule has a confidence of 85%, it means that 85% of the records containing X also contain Y.

The confidence of a rule indicates the degree of correlation in the dataset between X and Y. Confidence is a measure

of a rule’s strength. Often a large confidence is required for association rules. If a set of events occur a small

percentage of the time before a switch failure or if a product is purchased only very rarely with peanut butter, these

relationships may not be of much use for management.

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 2 March 2014

International Manuscript ID : 2249054XV4I2032014-16

Mining of association rules from a database consists of finding all rules that meet the user-specified threshold

support and confidence. The problem of mining association rules can be decomposed into two subproblems

[Agrawal1994] as stated in Algorithm 1.

Algorithm 1. Basic:

Input:

I, D, s, α

Output:

Association rules satisfying s and α

Algorithm:

1) Find all sets of items which occur with a frequency that is greater than or equal to the user-specified

threshold support, s.

2) Generate the desired rules using the large itemsets, which have user-specified threshold confidence, α.

Algorithm 2. Find Association Rules Given Large Itemsets:

Input:

I, D, s, α, L

Output:

Association rules satisfying s and α

Algorithm:

1) Find all nonempty subsets, x, of each large itemset, l ∈ L

3) For every subset, obtain a rule of the form x⇒ (l-x) if the ratio of the frequency of occurrence of l to that of

x is greater than or equal to the threshold confidence.

CRUCIAL ALGORITHMS

Most algorithms used to identify large itemsets can be classified as either sequential or parallel. In most cases, it is

assumed that the itemsets are identified and stored in lexicographic order (based on item name). This ordering

provides a logical manner in which itemsets can be generated and counted. This is the normal approach with

sequential algorithms. On the other hand, parallel algorithms focus on how to parallelize the task of finding large

itemsets.

Sequential Algorithms

AIS

The AIS algorithm was the first published algorithm developed to generate all large itemsets in a transaction

database [Agrawal1993]. It focused on the enhancement of databases with necessary functionality to process

decision support queries. This algorithm was targeted to discover qualitative rules. This technique is limited to only

one item in the consequent. That is, the association rules are in the form of X⇒Ij | α, where X is a set of items and Ij

is a single item in the domain I, and α is the confidence of the rule. The AIS algorithm makes multiple passes over

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 2 March 2014

International Manuscript ID : 2249054XV4I2032014-16

the entire database. During each pass, it scans all transactions. In the first pass, it counts the support of individual

items and determines which of them are large or frequent in the database. Large itemsets of each pass are extended to

generate candidate itemsets. After scanning a transaction, the common itemsets between large itemsets of the

previous pass and items of this transaction are determined. These common itemsets are extended with other items in

the transaction to generate new candidate itemsets. A large itemset l is extended with only those items in the

transaction that are large and occur in the lexicographic ordering of items later than any of the items in l. To perform

this task efficiently, it uses an estimation tool and pruning technique. The estimation and pruning techniques

determine candidate sets by omitting unnecessary itemsets from the candidate sets. Then, the support of each

candidate set is computed. Candidate sets having supports greater than or equal to min support are chosen as large

itemsets. These large itemsets are extended to generate candidate sets for the next pass. This process terminates

when no more large itemsets are found.

SETM

The SETM algorithm was proposed in [Houtsma1995] and was motivated by the desire to use SQL to calculate large

itemsets [Srikant1996b]. In this algorithm each member of the set large itemsets, kL , is in the form <TID, itemset>

where TID is the unique identifier of a transaction. Similarly, each member of the set of candidate itemsets, kC , is

in the form <TID, itemset>. Similar to the AIS algorithm, the SETM algorithm makes multiple passes over the

database. In the first pass, it counts the support of individual items and determines which of them are large or

frequent in the database. Then, it generates the candidate itemsets by extending large itemsets of the previous pass.

In addition, the SETM remembers the TIDs of the generating transactions with the candidate itemsets. The relational

merge-join operation can be used to generate candidate itemsets [Srikant1996b]. Generating candidate sets, the

SETM algorithm saves a copy of the candidate itemsets together with TID of the generating transaction in a

sequential manner. Afterwards, the candidate itemsets are sorted on itemsets, and small itemsets are deleted by using

an aggregation function. If the database is in sorted order on the basis of TID, large itemsets contained in a

transaction in the next pass are obtained by sorting kL on TID. This way, several passes are made on the database.

When no more large itemsets are found, the algorithm terminates. The main disadvantage of this algorithm is due to

the number of candidate sets kC [Agrawal1994]. Since for each candidate itemset there is a TID associated with it, it

requires more space to store a large number of TIDs. Furthermore, when the support of a candidate itemset is

counted at the end of the pass, kC is not in ordered fashion. Therefore, again sorting is needed on itemsets. Then, the

candidate itemsets are pruned by discarding the candidate itemsets which do not satisfy the support constraint.

Another sort on TID is necessary for the resulting set (kL). Afterwards, kL can be used for generating candidate

itemsets in the next pass. No buffer management technique was considered in the SETM algorithm [Agrawal1994].

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 2 March 2014

International Manuscript ID : 2249054XV4I2032014-16

It is assumed that kC can fit in the main memory. Furthermore, [Sarawagi1998] mentioned that SETM is not

efficient and there are no results reported on running it against a relational DBMS.

Apriori

The Apriori algorithm developed by [Agrawal1994] is a great achievement in the history of mining association rules

[Cheung1996c]. It is by far the most well-known association rule algorithm. This technique uses the property that

any subset of a large itemset must be a large itemset. Also, it is assumed that items within an itemset are kept in

lexicographic order. The fundamental differences of this algorithm from the AIS and SETM algorithms are the way

of generating candidate itemsets and the selection of candidate itemsets for counting. As mentioned earlier, in both

the AIS and SETM algorithms, the common itemsets between large itemsets of the previous pass and items of a

transaction are obtained. These common itemsets are extended with other individual items in the transaction to

generate candidate itemsets. However, those individual items may not be large. As we know that a superset of one

large itemset and a small itemset will result in a small itemset, these techniques generate too many candidate itemsets

which turn out to be small. The Apriori algorithm addresses this important issue. The Apriori generates the

candidate itemsets by joining the large itemsets of the previous pass and deleting those subsets which are small in the

previous pass without considering the transactions in the database. By only considering large itemsets of the previous

pass, the number of candidate large itemsets is significantly reduced.

Apriori-TID

As mentioned earlier, Apriori scans the entire database in each pass to count support. Scanning of the entire

database may not be needed in all passes. Based on this conjecture, [Agrawal1994] proposed another algorithm

called Apriori-TID. Similar to Apriori, Apriori-TID uses the Apriori’s candidate generating function to determine

candidate itemsets before the beginning of a pass. The main difference from Apriori is that it does not use the

database for counting support after the first pass. Rather, it uses an encoding of the candidate itemsets used in the

previous pass denoted by kC . As with SETM, each member of the set kC is of the form <TID, Xk> where Xk is a

potentially large k-itemset present in the transaction with the identifier TID. In the first pass, 1C corresponds to the

database. However, each item is replaced by the itemset. In other passes, the member of kC corresponding to

transaction T is <TID, c> where c is a candidate belonging to Ck contained in T. Therefore, the size of kC may be

smaller than the number of transactions in the database. Furthermore, each entry in kC may be smaller than the

corresponding transaction for larger k values. This is because very few candidates may be contained in the

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 2 March 2014

International Manuscript ID : 2249054XV4I2032014-16

transaction. It should be mentioned that each entry in kC may be larger than the corresponding transaction for

smaller k values [Srikant1996b].

Apriori-Hybrid

This algorithm is based on the idea that it is not necessary to use the same algorithm in all passes over data. As

mentioned in [Agrawal1994], Apriori has better performance in earlier passes, and Apiori-TID outperforms Apriori

in later passes. Based on the experimental observations, the Apriori-Hybrid technique was developed which uses

Apriori in the initial passes and switches to Apriori-TID when it expects that the set kC at the end of the pass will fit

in memory. Therefore, an estimation of kC at the end of each pass is necessary. Also, there is a cost involvement of

switching from Apriori to Apriori-TID. The performance of this technique was also evaluated by conducting

experiments for large datasets. It was observed that Apriori-Hybrid performs better than Apriori except in the case

when the switching occurs at the very end of the passes [Srikant1996b].

Off-line Candidate Determination (OCD)

The Off-line Candidate Determination (OCD) technique is proposed in [Mannila1994] based on the idea that small

samples are usually quite good for finding large itemsets. The OCD technique uses the results of the combinatorial

analysis of the information obtained from previous passes to eliminate unnecessary candidate sets. To know if a

subset Y⊆I is infrequent, at least (1-s) of the transactions must be scanned where s is the support threshold.

Therefore, for small values of s, almost the entire relation has to be read. It is obvious that if the database is very

large, it is important to make as few passes over the data as possible. OCD follows a different approach from AIS to

determine candidate sets. OCD uses all available information from previous passes to prune candidate sets between

the passes by keeping the pass as simple as possible.

Partitioning

PARTITION [Savasere1995] reduces the number of database scans to 2. It divides the database into small partitions

such that each partition can be handled in the main memory. Let the partitions of the database be D
1
, D

2
, ..., D

p
. In

the first scan, it finds the local large itemsets in each partition D
i
(1≤i≤p), i.e. {X |X.count ≥ s × |D

i
|}. The local large

itemsets, L
i
, can be found by using a level-wise algorithm such as Apriori. Since each partition can fit in the main

memory, there will be no additional disk I/O for each partition after loading the partition into the main memory. In

the second scan, it uses the property that a large itemset in the whole database must be locally large in at least one

partition of the database. Then the union of the local large itemsets found in each partition are used as the candidates

and are counted through the whole database to find all the large itemsets.

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 2 March 2014

International Manuscript ID : 2249054XV4I2032014-16

Sampling

Sampling [Toivonen1996] reduces the number of database scans to one in the best case and two in the worst. A

sample which can fit in the main memory is first drawn from the database. The set of large itemsets in the sample is

then found from this sample by using a level-wise algorithm such as Apriori. Let the set of large itemsets in the

sample be PL, which is used as a set of probable large itemsets and used to generate candidates which are to be

verified against the whole database . The candidates are generated by applying the negative border function, BD
−
, to

PL. Thus the candidates are BD
−
(PL)U PL. The negative border of a set of itemsets PL is the minimal set of

itemsets which are not in PL, but all their subsets are. The negative border function is a generalization of the

apriori_gen function in Apriori. When all itemsets in PL are of the same size, BD
−
(PL) = apriori_gen(PL). The

difference lies in that the negative border can be applied to a set of itemsets of different sizes, while the function

apriori_gen() only applies to a single size. After the candidates are generated, the whole database is scanned once to

determine the counts of the candidates. If all large itemsets are in PL, i.e., no itemsets in BD
−
(PL) turn out to be

large, then all large itemsets are found and the algorithm terminates. This can guarantee that all large itemsets are

found, because BD
−
(PL)U PL actually contains all candidate itemsets of Apriori if PL contains all large itemsets L,

i.e., L⊆PL. Otherwise, i.e. there are misses in BD
−
(PL), some new candidate itemsets must be counted to ensure that

all large itemsets are found, and thus one more scan is needed. In this case, i.e., LI PL ≠ ∅, the candidate itemsets

in the first scan may not contain all candidate itemsets of Apriori.

Algorithm : Sampling [Toivonen 96]

Input:

I, s, D

Output:

L

Algorithm:

//draw a sample and find the local large itemsets in the sample

1) Ds = a random sample drawn from D;

2) PL = Apriori(I,Ds,s);

//first scan counts the candidates generated from PL

3) C = PLU BD
−
(PL);

4) count(C, D);

//second scan counts additional candidates if there are misses in BD
−
(PL)

5) ML = {x | x ∈ BD
−
(PL), x.count ≥ s × |D|}; //ML are the misses

6) if ML ≠ ∅ then //MC are the new candidates generated from the misses

7) MC = {x | x ∈ C, x.count ≥ s × |D|};

8) repeat

9) MC = MCU BD
−
(MC);

10) until MC doesn’t grow;

11) MC = MC - C); //itemsets in C have already been counted in scan one

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 2 March 2014

International Manuscript ID : 2249054XV4I2032014-16

12) count(MC, D);

13) return L = {x | x ∈ CU MC, x.count ≥ s × |D|};

Dynamic Itemset Counting [Brin1997a]

DIC (Dynamic Itemset Counting) [Brin1997a] tries to generate and count the itemsets earlier, thus reducing the

number of database scans. The database is viewed as intervals of transactions, and the intervals are scanned

sequentially. While scanning the first interval, the 1-itemsets are generated and counted. At the end of the first

interval, the 2-itemsets which are potentially large are generated. While scanning the second interval, all 1-itemsets

and 2-itemsets generated are counted. At the end of the second interval, the 3-itemsets that are potentially large are

generated, and are counted during scanning the third interval together with the 1-itemsets and 2-itemsets. In general,

at the end of the kth interval, the (k+1)-itemsets which are potentially large are generated and counted together with

the previous itemsets in the later intervals. When reaching the end of the database, it rewinds the database to the

beginning and counts the itemsets which are not fully counted. The actual number of database scans depends on the

interval size. If the interval is small enough, all itemsets will be generated in the first scan and fully counted in the

second scan. It also favors a homogeneous distribution as does the PARTITION.

CARMA

CARMA (Continuous Association Rule Mining Algorithm) [Hidb1999] brings the computation of large itemsets

online. Being online, CARMA shows the current association rules to the user and allows the user to change the

parameters, minimum support and minimum confidence, at any transaction during the first scan of the database. It

needs at most 2 database scans. Similar to DIC, CARMA generates the itemsets in the first scan and finishes

counting all the itemsets in the second scan. Different from DIC, CARMA generates the itemsets on the fly from the

transactions. After reading each transaction, it first increments the counts of the itemsets which are subsets of the

transaction. Then it generates new itemsets from the transaction, if all immediate subsets of the itemsets are currently

potentially large with respect to the current minimum support and the part of the database that is read. For more

accurate prediction of whether an itemset is potentially large, it calculates an upper bound for the count of the

itemset, which is the sum of its current count and an estimate of the number of occurrences before the itemset is

generated. The estimate of the number of occurrences (called maximum misses) is computed when the itemset is first

generated.

Parallel and Distributed Algorithms

The current parallel and distributed algorithms are based on the serial algorithm Apriori. An excellent survey given

in [Zaki1999] classifies the algorithms by load-balancing strategy, architecture and parallelism. Here we focus on the

parallelism used: data parallelism and task parallelism [Chat1997]. The two paradigms differ in whether the

candidate set is distributed across the processors or not. In the data parallelism paradigm, each node counts the same

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 2 March 2014

International Manuscript ID : 2249054XV4I2032014-16

set of candidates. In the task parallelism paradigm, the candidate set is partitioned and distributed across the

processors, and each node counts a different set of candidates. The database, however, may or may not be partitioned

in either paradigm theoretically. In practice for more efficient I/O it is usually assumed the database is partitioned

and distributed across the processors. In the data parallelism paradigm, a representative algorithm is the count

distribution algorithm in [Agrawal1996]. The candidates are duplicated on all processors, and the database is

distributed across the processors. Each processor is responsible for computing the local support counts of all the

candidates, which are the support counts in its database partition. All processors then compute the global support

counts of the candidates, which are the total support counts of the candidates in the whole database, by exchanging

the local support counts (Global Reduction).

Data Parallelism Algorithms

The algorithms which adopt the data parallelism paradigm include: CD [Agrawal1996], PDM [Park1995], DMA

[Cheung1996], and CCPD [Zaki1996]. These parallel algorithms differ in whether further candidate pruning or

efficient candidate counting techniques are employed or not. The representative algorithm CD(Count Distribution) is

described in details, and for the other three algorithms only the additional techniques introduced are described.

CD

In CD, the database D is partitioned into {D
1
, D

2
, …, D

p
} and distributed across n processors. Note that we use

superscript to denote the processor number, while subscript the size of candidates. The program fragment of CD at

processor i, 1 ≤ i ≤ p, is outlined in Algorithm 6. There are basically three steps. In step 1, local support counts of

the candidates Ck in the local database partition D
i
 are found. In step 2, each processor exchanges the local support

counts of all candidates to get the global support counts of all candidates. In step 3, the globally large itemsets Lk are

identified and the candidates of size k+1 are generated by applying apriori_gen() to Lk on each processor

independently. CD repeats steps 1 - 3 until no more candidates are found. CD was implemented on an IBM SP2

parallel computer, which is shared-nothing and communicates through the High-Performance Switch.

Algorithm : CD [Agrawal 1996]

Input:

I, s, D
1
, D

2
, …, D

p

Output:

L

Algorithm:

1) C1=I;

2) for k=1;Ck≠∅;k++ do begin

 //step one: counting to get the local counts

3) count(Ck, D
i
); //local processor is i

//step two: exchanging the local counts with other processors

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 2 March 2014

International Manuscript ID : 2249054XV4I2032014-16

//to obtain the global counts in the whole database.

4) forall itemset X ∈ Ck do begin

5) X.count=∑j=1
p
{X

j
.count};

6) end

//step three: identifying the large itemsets and

//generating the candidates of size k+1

7) Lk={c ∈ Ck | c.count ≥ s × | D
1∪D

2∪…∪D
p
 |};

8) Ck+1=apriori_gen(Lk);

9) end

10) return L=L1U L2 U …U Lk;

PDM (Parallel Data Mining)

PDM (Parallel Data Mining) [Park1995a] is a modification of CD with inclusion of the direct hashing technique

proposed in [Park1995]. The hash technique is used to prune some candidates in the next pass. It is especially useful

for the second pass, as Apriori doesn't have any pruning in generating C2 from L1. In the first pass, in addition to

counting all 1-itemsets, PDM maintains a hash table for storing the counts of the 2-itemsets. Note that in the hash

table we don't need to store the 2-itemsets themselves but only the count for each bucket. For example, suppose {A,

B} and {C} are large items and in the hash table for the 2-itemsets the bucket containing {AB, AD} turns out to be

small (the count for this bucket is less than the minimum support count). PDM will not generate AB as a size 2

candidate by the hash technique, while Apriori will generate AB as a candidate for the second pass, as no

information about 2-itemsets can be obtained in the first pass. For the communication, in the k
th
 pass, PDM needs to

exchange the local counts in the hash table for k+1-itemsets in addition to the local counts of the candidate k-

itemsets.

DMA

DMA (Distributed Mining Algorithm) [Cheung1996] is also based on the data parallelism paradigm with the

addition of candidate pruning techniques and communication message reduction techniques introduced. It uses the

local counts of the large itemsets on each processor to decide whether a large itemset is heavy (both locally large in

one database partition and globally large in the whole database), and then generates the candidates from the heavy

large itemsets. For example, A and B are found heavy on processor 1 and 2 respectively, that is, A is globally large

and locally large only on processor 1, B is globally large and locally large only on processor 2. DMA will not

generate AB as a candidate 2-itemset, while Apriori will generate AB due to no consideration about the local counts

on each processor. For the communication, instead of broadcasting the local counts of all candidates as in CD, DMA

only sends the local counts to one polling site, thus reducing the message size from O(p
2
) to O(p). DMA was

implemented on a distributed network system initially, and was improved to a parallel version FPM(Fast Parallel

Mining) on an IBM SP2 parallel machine [Cheung1998].

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 2 March 2014

International Manuscript ID : 2249054XV4I2032014-16

CCPD

CCPD (Common Candidate Partitioned Database) [Zaki1996] implements CD on a shared-memory SGI Power

Challenge with some improvements. It proposes techniques for efficiently generating and counting the candidates in

a shared-memory environment. It groups the large itemsets into equivalence classes based on the common prefixes

(usually the first item) and generates the candidates from each equivalence class. Note that the grouping of the large

itemsets will not reduce the number of candidates but reduce the time to generate the candidates. It also introduces a

short-circuited subset checking method for efficient counting the candidates for each transaction.

Task Parallelism Algorithms

The algorithms adopting the task parallelism paradigm include: DD [Agrawal1996], IDD [Han1997], HPA

[Shintani1996] and PAR [Zaki1997]. They all partition the candidates as well as the database among the processors.

They differ in how the candidates and the database are partitioned. The representative algorithm DD (Data

Distribution) [Agrawal1996] is described in more detail, and for the other algorithms only the different techniques

are reviewed.

DD

In DD (Data Distribution) [Agrawal1996], the candidates are partitioned and distributed over all the processors in a

round-robin fashion. There are three steps. In step one, each processor scans the local database partition to get the

local counts of the candidates distributed to it. In step two, every processor broadcasts its database partition to the

other processors and receives the other database partitions from the other processors, then scans the received

database partitions to get global support counts in the whole database. In the last step, each processor computes the

large itemsets in its candidate partition, exchanges with all others to get all the large itemsets, and then generates the

candidates, partitions and distributes the candidates over all processors. These steps continue until there are no more

candidates generated. Note that the communication overhead of broadcasting the database partitions can be reduced

by asynchronous communication [Agrawal1996], which overlaps communication and computation. The details are

described in Algorithm 7.

Algorithm : DD [Agrawal 1996]

Input:

I,s,D
1
, D

2
, …, D

p

Output:

L

Algorithm:

1) C1
i⊆I;

2) for (k=1;Ck
i≠∅;k++) do begin

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 2 March 2014

International Manuscript ID : 2249054XV4I2032014-16

 //step one: counting to get the local counts

3) count(Ck
i
 , D

i
); //local processor is i

//step two: broadcast the local database partition to others,

// receive the remote database partitions from others,

// scan D
j
(1≤j≤p, j≠i) to get the global counts.

4) broadcast(D
i
);

5) for (j=1; (j≤p and j≠i);j++) do begin

6) receive(D
j
) from processor j;

7) count(Ck
i
 , D

j
);

8) end

//step three: identify the large itemsets in C
i
k,

// exchange with other processors to get all large itemsets Ck,

// generate the candidates of size k+1,

// partition the candidates and distribute over all processors.

9) Lk
i
={c|c∈C

i
k, c.count ≥ s∗|D

1∪D
2∪…∪D

p
|};

10) Lk= U i=1
p
(Lk

i
);

11) Ck+1 = apriori_gen(Lk);

12) Ck+1
i ⊆ Ck+1; //partition the candidate itemsets across the processors

13) end

14) return L = L1U L2 U … U Lk;

IDD

IDD (Intelligent Data Distribution) is an improvement over DD [Han1997]. It partitions the candidates across the

processors based on the first item of the candidates, that is, the candidates with the same first item will be partitioned

into the same partition. Therefore, each processor needs to check only the subsets which begin with one of the items

assigned to the processor. This reduces the redundant computation in DD, as for DD each processor needs to check

all subsets of each transaction, which introduces a lot of redundant computation. To achieve a load-balanced

distribution of the candidates, it uses a bin-packing technique to partition the candidates, that is, it first computes for

each item the number of candidates that begin with the particular item, then it uses a bin-packing algorithm to assign

the items to the candidate partitions such that the number of candidates in each partition is equal. It also adopts a

ring architecture to reduce communication overhead, that is, it uses asynchronous point to point communication

between neighbors in the ring instead of broadcasting.

Comparison of Algorithms

Algorithm Scan Comments

AIS m+1 Suitable for low cardinality sparse transaction database;

Single consequent

SETM m+1 SQL compatible

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 2 March 2014

International Manuscript ID : 2249054XV4I2032014-16

Apriori m+1 Transaction database with moderate cardinality;

Outperforms both AIS and SETM; Base algorithm for

parallel algorithms

Apriori-TID m+1
Very slow with larger number of kC ;

Outperforms Apriori with smaller number of kC ;

Apriori-

Hybrid

m+1 Better than Apriori. However, switching from Apriori to

Apriori-TID is expensive; Very crucial to figure out the

transition point.

OCD 2 Applicable in large DB with lower support threshold.

Partition 2 Suitable for large DB with high cardinality of data;

Favors homogenous data distribution

Sampling 2 Applicable in very large DB with lower support.

DIC Depe

nds

on

interv

al size

Database viewed as intervals of transactions; Candidates

of increased size are generated at the end of an interval

CARMA 2 Applicable where transaction sequences are read from a

Network; Online, users get continuous feedback and

change support and/or confidence any time during

process.

CD m+1 Data Parallelism.

PDM m+1 Data Parallelism; with early candidate pruning

DMA m+1 Data Parallelism; with candidate pruning

Algorithm Scan Data structure Comments

CCPD m+1 Hash table and tree Data Parallelism; on shared-memory machine

DD m+1 Hash table and tree Task Parallelism; round- robin partition

IDD m+1 Hash table and tree Task Parallelism; partition by the first items

HPA m+1 Hash table and tree Task Parallelism; partition by hash function

SH m+1 Hash table and tree Data Parallelism; candidates generated independently by

each processor.

HD m+1 Hash table and tree Hybrid data and task parallelism; grid parallel

architecture

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 2 March 2014

International Manuscript ID : 2249054XV4I2032014-16

CONCLUSION AND SUMMARY

Most association rule algorithms assume a static database. With these approaches the algorithm must be performed

completely against each new database state to be able to generate the new set of association rules. In large databases

or volatile databases, this may not be acceptable. There have been many proposals to facilitate the maintenance of

association rules. These approaches are often referred to as incremental updating strategies when only additions to

the transaction database are considered. The first incremental updating strategy was call Fast Update (FUP). The

problem with incremental updating is to find the large itemsets for a database D∪db where both D and db are sets of

transactions and the set of large itemsets, L, for D is already known. FUP is based on the Apriori algorithm. For

each iteration, only db is scanned using the known set of large itemsets of size k, Lk, from D as the candidates. This

is used to remove the candidates which are no longer large in the larger database, D∪db. Simultaneously a set of

new candidates is determined. Three variations of this algorithm have subsequently been proposed which create less

candidates, FUP* and FUP2, and are applicable for multi-level association rules, MLUp. Another approach to

maintaining association rules is based on the idea of sampling.

REFERENCES

[1] [Aggarwal1998a] Charu C. Aggarwal, Zheng Sun, and Philip S. Yu, Online Algorithms for Finding Profile

Association Rules, Proceedings of the ACM CIKM Conference, 1998, pp 86-95.

[2] [Aggarwal1998b] C. C. Aggarwal, J. L. Wolf, P. S. Yu, and M. Epelman, Online Generation of Profile

Association Rules, Proceedings of the International conference on Knowledge Discovery and Data Mining,

August 1998.

[3] [Aggrawal1998c] Charu C. Aggarwal, and Philip S. Yu, A New Framework for Itemset Generation,

Principles of Database Systems (PODS) 1998, Seattle, WA.

[4] [Agrawal1993] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami, Mining Association Rules

Between Sets of Items in Large Databases, Proceedings of the 1993 ACM SIGMOD International

Conference on Management of Data, pp. 207-216, Washington, D.C., May 1993.

[5] [Agrawal1993a] Rakesh Agrawal, Tomasz Imielinski and Arun N. Swami", Data Mining: A Performance

perspective, IEEE Transactions on Knowledge and Data Engineering, Vol. 5, No. 6, December 1993, pp.

914-925.

[6] [Agrawal1994] Rakesh Agrawal and Ramakrishnan Srikant, Fast Algorithms for Mining Association Rules

in Large Databases, Proceedings of the Twentieth International Conference on Very Large Databases, pp.

487-499, Santiago, Chile, 1994.

[7] Rakesh Agrawal and Ramakrishnan Srikant, Mining Sequential Patterns, Proceedings of the 11th IEEE

International Conference on Data Engineering, Taipei, Taiwan, March 1995, IEEE Computer Society

Press.

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 2 March 2014

International Manuscript ID : 2249054XV4I2032014-16

[8] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen, and A. Inkeri Verkamo, Fast

Discovery of Association Rules, In Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and

Ramasamy Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, pp. 307-328, Menlo

Park, CA, 1996. AAAI Press.

[9] [Agrawal1996] Rakesh Agrawal and John C. Shafer, Parallel Mining of Association Rules, IEEE

Transactions on Knowledge and Data Engineering, Vol. 8, No. 6, pp. 962-969, December 1996.

[10] Roberto J. Bayardo Jr., Rakesh Agrawal, Dimitris Gunopulos, Constarint-Based Rule Mining in Large,

Dense Databases, Proceedings of the 15th International Conference on Data Engineering, 23-26 March

1999, Sydney, Australia, pp.188-197

[11] [Brin1997a] Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur, Dynamic Itemset

Counting and Implication Rules for Market Basket Data, Proceedings of the ACM SIGMOD Conference,

pp. 255-264, 1997.

[12] [Brin1997b] Sergey Brin, Rajeev Motwani, and Craig Silverstein, Beyond Market Baskets:

Generalizing Association Rules to Correlations, Proceedings of the ACM SIGMOD Conference, pp. 265-

276, 1997.

[13] [Cengiz1997] Ilker Cengiz, Mining Association Rules, Bilkent University, Department of Computer

Engineering and Information Sciences, Ankara, Turkey, 1997, URL:

http://www.cs.bilkent.edu.tr/~icegiz/datamone/mining.html.

[14] [Chat1997] Jaturon Chattratichat, John Darlington, Moustafa Ghanem, and et. al, Large Scale Data

Mining: Challenges and Responses, Proceedings of the 3th International Conference on Knowledge

Discovery and Data Mining, pp. 143-146, August 1997.

[15] [Chen1996] Ming-Syan Chen, Jiawei Han and Philip S. Yu, Data Mining: An Overview from a

Database Perspective, IEEE Transactions on Knowledge and Data Engineering, Vol. 8, No. 6, pp. 866-883,

1996.

[16] [Cheung1996] David Wai-Lok Cheung, Jiawei Han, Vincent Ng, Ada Wai-Chee Fu, and Yongjian Fu,

A Fast Distributed Algorithm for Mining Association Rules, Proceedings of PDIS, 1996.

[17] [Cheung1996a] D. W. Cheung, J. Han, V. T. Ng, and C. Y. Wong, Maintenance of Discovered

Association Rules in Large Databases: An Incremental Updating Technique, Proceedings of the 12th IEEE

International Conference on Data Engineering, pp. 106-114, February 1996.

[18] [Cheung1996b] David W. Cheung, Vincent T. Ng, and Benjamin W. Tam, Maintenance of Discovered

Knowledge: A Case in Multi-level Association Rules, Proceedings of the Second International KDD

Conference, 1996, pp307-310.

[19] [Cheung1996c] David Wai-Lok Cheung, Vincent T. Ng, Ada Wai-Chee Fu, and Yongjian Fu,

Efficient Mining of Association Rules in Distributed Databases, IEEE Transactions on Knowledge and Data

Engineering, Vol. 8, No. 6, pp. 911-922, December 1996.

[20] [Cheung1997] David Wai-Lok Cheung, Sau Dan Lee and Benjamin C. M. Kao, A General Incremental

Technique for Maintaining Discovered Association Rules, pp. 185-194, Proceedings of the DASFAA,

1997.

