
International Journal of Computing and Corporate Research 

ISSN (Online) : 2249-054X 

Volume 4 Issue 2 March 2014 

International Manuscript ID : 2249054XV4I2032014-16 

 

 

AN EMPIRICAL REVIEW ON ASSOCIATIVE RULE MINING AND 

CLASSIFICATION USING ASSORTED TECHNIQUES 

 

 

Anuradha 

Research Scholar 

Department of Computer Science and Applications 

Kurukshetra University, Kurukshetra 

 

 

Dr. Chanderkant Verma 

Assistant Professor 

Department of Computer Science and Applications 

Kurukshetra University, Kurukshetra 

 

 

ABSTRACT 

Association rule mining and standards, initially presented in 1993, are utilized to distinguish connections around a 

set of things in a database.  These connections are not dependent upon innate properties of the information 

themselves (as with practical conditions), but instead dependent upon co-event of the information things.  

Association principles are additionally utilized for different requisitions, for example, expectation of disappointment 

in telecommunications arranges by distinguishing what occasions happen before a disappointment. The vast majority 

of our attention in this paper will be on bushel market dissection, however in later segments we will take a gander at 

different provisions too. Acquaintanceship guidelines are a standout amongst the most investigated zones of 

information mining and have as of late accepted much consideration from the database group.  They have ended up 

being very convenient in the promoting and retail groups and other more various fields. In this paper we give a 

review of acquaintanceship guideline research. The target of this paper is to give a careful review of past exploration 

on affiliation principles. 
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INTRODUCTION 

Data mining is a powerful situated of dissection apparatuses and systems utilized within the decision support process. 

Notwithstanding, misguided judgments about the part that data mining plays in choice help results can prompt 

perplexity about and abuse of these apparatuses and methods. Data Mining is the disclosure of concealed data found 

in databases and could be seen as a venture in the learning finding methodology. Information mining capacities 

incorporate bunching, grouping, forecast, join investigation and cooperations.  One of the most paramount 

information mining requisitions is that of mining acquaintanceship guidelines. 

 

A formal statement of the association rule problem is [Agrawal1993] [Cheung1996c]:  

Definition 1:  Let I ={I1, I2, … , Im} be a set of m distinct attributes, also called literals. Let D be a database, where 

each record (tuple) T has a unique identifier, and contains a set of items such that T⊆I  An association rule is an 

implication of the form X⇒Y, where X, Y⊂I, are sets of items called itemsets, and XI Y=φ. Here, X is called 

antecedent, and Y consequent. Two important measures for association rules, support (s) and confidence (α), can be 

defined as follows. 

 

Definition 2:  The support (s) of an association rule is the ratio (in percent) of the records that contain XU Y to the 

total number of records in the database. 

 

Therefore, if we say that the support of a rule is 5% then it means that 5% of the total records contain XU Y. 

Support is the statistical significance of an association rule.  Grocery store managers probably would not be 

concerned about how peanut butter and bread are related if less than 5% of store transactions have this combination 

of purchases.  While a high support is often desirable for association rules, this is not always the case.  For example, 

if we were using association rules to predict the failure of telecommunications switching nodes based on what set of 

events occur prior to failure, even if these events do not occur very frequently association rules showing this 

relationship would still be important. 

 

Definition 3: For a given number of records, confidence (α) is the ratio (in percent) of the number of records that 

contain XU Y to the number of records that contain X.  

 

Thus, if we say that a rule has a confidence of 85%, it means that 85% of the records containing X also contain Y.  

The confidence of a rule indicates the degree of correlation in the dataset between X and Y.  Confidence is a measure 

of a rule’s strength.  Often a large confidence is required for association rules.  If a set of events occur a small 

percentage of the time before a switch failure or if a product is purchased only very rarely with peanut butter, these 

relationships may not be of much use for management. 
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Mining of association rules from a database consists of finding all rules that meet the user-specified threshold 

support and confidence.  The problem of mining association rules can be decomposed into two subproblems 

[Agrawal1994] as stated in Algorithm 1. 

 

Algorithm 1.  Basic: 

Input: 

I, D, s, α 

Output: 

Association rules satisfying s and α 

Algorithm: 

1) Find all sets of items which occur with a frequency that is greater than or equal to the user-specified 

threshold support, s.  

2) Generate the desired rules using the large itemsets, which have user-specified threshold confidence, α. 

 

Algorithm 2.  Find Association Rules Given Large Itemsets: 

Input: 

I, D, s, α, L 

Output: 

Association rules satisfying s and α 

Algorithm: 

1) Find all nonempty subsets, x, of each large itemset, l ∈ L 

3) For every subset, obtain a rule of the form x⇒ (l-x) if the ratio of the frequency of occurrence of  l to that of 

x is greater than or equal to the threshold confidence. 

 

 

CRUCIAL ALGORITHMS 

Most algorithms used to identify large itemsets can be classified as either sequential or parallel.  In most cases, it is 

assumed that the itemsets are identified and stored in lexicographic order (based on item name).  This ordering 

provides a logical manner in which itemsets can be generated and counted.  This is the normal approach with 

sequential algorithms.  On the other hand, parallel algorithms focus on how to parallelize the task of finding large 

itemsets. 

 

Sequential Algorithms  

       

AIS 

The AIS algorithm was the first published algorithm developed to generate all large itemsets in a transaction 

database [Agrawal1993].  It focused on the enhancement of databases with necessary functionality to process 

decision support queries.  This algorithm was targeted to discover qualitative rules. This technique is limited to only 

one item in the consequent. That is, the association rules are in the form of X⇒Ij | α, where X is a set of items and Ij 

is a single item in the domain I, and α is the confidence of the rule. The AIS algorithm makes multiple passes over 
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the entire database.  During each pass, it scans all transactions.  In the first pass, it counts the support of individual 

items and determines which of them are large or frequent in the database. Large itemsets of each pass are extended to 

generate candidate itemsets.  After scanning a transaction, the common itemsets between large itemsets of the 

previous pass and items of this transaction are determined.  These common itemsets are extended with other items in 

the transaction to generate new candidate itemsets.  A large itemset l is extended with only those items in the 

transaction that are large and occur in the lexicographic ordering of items later than any of the items in l.  To perform 

this task efficiently, it uses an estimation tool and pruning technique. The estimation and pruning techniques 

determine candidate sets by omitting unnecessary itemsets from the candidate sets.  Then, the support of each 

candidate set is computed.  Candidate sets having supports greater than or equal to min support are chosen as large 

itemsets.  These large itemsets are extended to generate candidate sets for the next pass. This process terminates 

when no more large itemsets are found.   

 

SETM 
 

The SETM algorithm was proposed in [Houtsma1995] and was motivated by the desire to use SQL to calculate large 

itemsets [Srikant1996b].  In this algorithm each member of the set large itemsets, kL , is in the form <TID, itemset> 

where TID is the unique identifier of a transaction.  Similarly, each member of the set of candidate itemsets, kC , is 

in the form <TID, itemset>.   Similar to the AIS algorithm, the SETM algorithm makes multiple passes over the 

database. In the first pass, it counts the support of individual items and determines which of them are large or 

frequent in the database.   Then, it generates the candidate itemsets by extending large itemsets of the previous pass.  

In addition, the SETM remembers the TIDs of the generating transactions with the candidate itemsets. The relational 

merge-join operation can be used to generate candidate itemsets [Srikant1996b].  Generating candidate sets, the 

SETM algorithm saves a copy of the candidate itemsets together with TID of the generating transaction in a 

sequential manner. Afterwards, the candidate itemsets are sorted on itemsets, and small itemsets are deleted by using 

an aggregation function.  If the database is in sorted order on the basis of TID, large itemsets contained in a 

transaction in the next pass are obtained by sorting kL  on TID.  This way, several passes are made on the database.  

When no more large itemsets are found, the algorithm terminates. The main disadvantage of this algorithm is due to 

the number of candidate sets kC [Agrawal1994]. Since for each candidate itemset there is a TID associated with it, it 

requires more space to store a large number of TIDs.  Furthermore, when the support of a candidate itemset is 

counted at the end of the pass, kC is not in ordered fashion. Therefore, again sorting is needed on itemsets. Then, the 

candidate itemsets are pruned by discarding the candidate itemsets which do not satisfy the support constraint. 

Another sort on TID is necessary for the resulting set ( kL ). Afterwards, kL can be used for generating candidate 

itemsets in the next pass. No buffer management technique was considered in the SETM algorithm [Agrawal1994].  
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It is assumed that kC can fit in the main memory.  Furthermore, [Sarawagi1998] mentioned that SETM is not 

efficient and there are no results reported on running it against a relational DBMS.   

 

Apriori 

The Apriori algorithm developed by [Agrawal1994] is a great achievement in the history of mining association rules 

[Cheung1996c].  It is by far the most well-known association rule algorithm.  This technique uses the property that 

any subset of a large itemset must be a large itemset.  Also, it is assumed that items within an itemset are kept in 

lexicographic order.  The fundamental differences of this algorithm from the AIS and SETM algorithms are the way 

of generating candidate itemsets and the selection of candidate itemsets for counting.  As mentioned earlier, in both 

the AIS and SETM algorithms, the common itemsets between large itemsets of the previous pass and items of a 

transaction are obtained. These common itemsets are extended with other individual items in the transaction to 

generate candidate itemsets.  However, those individual items may not be large.  As we know that a superset of one 

large itemset and a small itemset will result in a small itemset, these techniques generate too many candidate itemsets 

which turn out to be small.  The Apriori algorithm addresses this important issue.  The Apriori generates the 

candidate itemsets by joining the large itemsets of the previous pass and deleting those subsets which are small in the 

previous pass without considering the transactions in the database. By only considering large itemsets of the previous 

pass, the number of candidate large itemsets is significantly reduced.   

 

Apriori-TID 

As mentioned earlier, Apriori scans the entire database in each pass to count support.  Scanning of the entire 

database may not be needed in all passes.  Based on this conjecture, [Agrawal1994] proposed another algorithm 

called Apriori-TID.  Similar to Apriori, Apriori-TID uses the Apriori’s candidate generating function to determine 

candidate itemsets before the beginning of a pass.  The main difference from Apriori is that it does not use the 

database for counting support after the first pass.  Rather, it uses an encoding of the candidate itemsets used in the 

previous pass denoted by kC .  As with SETM, each member of the set kC  is of the form <TID, Xk> where Xk is a 

potentially large k-itemset present in the transaction with the identifier TID. In the first pass, 1C  corresponds to the 

database.  However, each item is replaced by the itemset.  In other passes, the member of kC  corresponding to 

transaction T is <TID, c> where c is a candidate belonging to Ck contained in T.  Therefore, the size of kC  may be 

smaller than the number of transactions in the database.  Furthermore, each entry in kC  may be smaller than the 

corresponding transaction for larger k values.  This is because very few candidates may be contained in the 
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transaction.  It should be mentioned that each entry in kC  may be larger than the corresponding transaction for 

smaller k values [Srikant1996b].   

 

Apriori-Hybrid 

This algorithm is based on the idea that it is not necessary to use the same algorithm in all passes over data. As 

mentioned in [Agrawal1994], Apriori has better performance in earlier passes, and Apiori-TID outperforms Apriori 

in later passes. Based on the experimental observations, the Apriori-Hybrid technique was developed which uses 

Apriori in the initial passes and switches to Apriori-TID when it expects that the set kC  at the end of the pass will fit 

in memory. Therefore, an estimation of kC  at the end of each pass is necessary.  Also, there is a cost involvement of 

switching from Apriori to Apriori-TID. The performance of this technique was also evaluated by conducting 

experiments for large datasets. It was observed that Apriori-Hybrid performs better than Apriori except in the case 

when the switching occurs at the very end of the passes [Srikant1996b].  

 

Off-line Candidate Determination (OCD) 

The Off-line Candidate Determination (OCD) technique is proposed in [Mannila1994] based on the idea that small 

samples are usually quite good for finding large itemsets.  The OCD technique uses the results of the combinatorial 

analysis of the information obtained from previous passes to eliminate unnecessary candidate sets.  To know if a 

subset Y⊆I is infrequent, at least (1-s) of the transactions must be scanned where s is the support threshold.  

Therefore, for small values of s, almost the entire relation has to be read.  It is obvious that if the database is very 

large, it is important to make as few passes over the data as possible. OCD follows a different approach from AIS to 

determine candidate sets.  OCD uses all available information from previous passes to prune candidate sets between 

the passes by keeping the pass as simple as possible.  

 

Partitioning 

PARTITION [Savasere1995] reduces the number of database scans to 2. It divides the database into small partitions 

such that each partition can be handled in the main memory. Let the partitions of the database be D
1
, D

2
, ..., D

p
. In 

the first scan, it finds the local large itemsets in each partition D
i 
(1≤i≤p), i.e. {X |X.count ≥ s × |D

i
|}. The local large 

itemsets, L
i
, can be found by using a level-wise algorithm such as Apriori. Since each partition can fit in the main 

memory, there will be no additional disk I/O for each partition after loading the partition into the main memory. In 

the second scan, it uses the property that a large itemset in the whole database must be locally large in at least one 

partition of the database. Then the union of the local large itemsets found in each partition are used as the candidates 

and are counted through the whole database to find all the large itemsets.  
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Sampling 

Sampling [Toivonen1996] reduces the number of database scans to one in the best case and two in the worst.  A 

sample which can fit in the main memory is first drawn from the database. The set of large itemsets in the sample is 

then found from this sample by using a level-wise algorithm such as Apriori.  Let the set of large itemsets in the 

sample be PL, which is used as a set of probable large itemsets and used to generate candidates which are to be 

verified against the whole database . The candidates are generated by applying the negative border function, BD
−
, to 

PL.  Thus the candidates are BD
−
(PL)U PL. The negative border of a set of itemsets PL is the minimal set of 

itemsets which are not in PL, but all their subsets are. The negative border function is a generalization of the 

apriori_gen function in Apriori. When all itemsets in PL are of the same size, BD
−
(PL) = apriori_gen(PL). The 

difference lies in that the negative border can be applied to a set of itemsets of different sizes, while the function 

apriori_gen() only applies to a single size. After the candidates are generated, the whole database is scanned once to 

determine the counts of the candidates. If all large itemsets are in PL, i.e., no itemsets in BD
−
(PL ) turn out to be 

large, then all large itemsets are found and the algorithm terminates. This can guarantee that all large itemsets are 

found, because BD
−
(PL)U PL actually contains all candidate itemsets of Apriori if PL contains all large itemsets L, 

i.e., L⊆PL. Otherwise, i.e. there are misses in BD
−
(PL), some new candidate itemsets must be counted to ensure that 

all large itemsets are found, and thus one more scan is needed.  In this case, i.e., LI PL ≠ ∅, the candidate itemsets 

in the first scan may not contain all candidate itemsets of Apriori. 

 

Algorithm : Sampling [Toivonen 96] 

Input: 

I, s, D 

Output: 

L 

Algorithm: 

//draw a sample and find the local large itemsets in the sample 

1)  Ds = a random sample drawn from D; 

2)  PL = Apriori(I,Ds,s); 

//first scan counts the candidates generated from PL 

3)  C = PLU BD
−
(PL); 

4)  count(C, D); 

//second scan counts additional candidates if there are misses in BD
−
(PL) 

5)  ML = {x | x ∈ BD
−
(PL), x.count ≥ s × |D|}; //ML are the misses 

6)  if ML ≠ ∅ then //MC are the new candidates generated from the misses 

7) MC = {x | x ∈ C, x.count ≥ s × |D|}; 

8)      repeat 

9)            MC = MCU BD
−
(MC); 

10)    until MC doesn’t grow; 

11)    MC = MC - C); //itemsets in C have already been counted in scan one 
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12)    count(MC, D); 

13) return L = {x | x ∈ CU MC, x.count ≥ s × |D|}; 

 

Dynamic Itemset Counting [Brin1997a] 

DIC (Dynamic Itemset Counting) [Brin1997a] tries to generate and count the itemsets earlier, thus reducing the 

number of database scans. The database is viewed as intervals of transactions, and the intervals are scanned 

sequentially. While scanning the first interval, the 1-itemsets are generated and counted. At the end of the first 

interval, the 2-itemsets which are potentially large are generated. While scanning the second interval, all 1-itemsets 

and 2-itemsets generated are counted. At the end of the second interval, the 3-itemsets that are potentially large are 

generated, and are counted during scanning the third interval together with the 1-itemsets and 2-itemsets. In general, 

at the end of the kth interval, the (k+1)-itemsets which are potentially large are generated and counted together with 

the previous itemsets in the later intervals. When reaching the end of the database, it rewinds the database to the 

beginning and counts the itemsets which are not fully counted. The actual number of database scans depends on the 

interval size. If the interval is small enough, all itemsets will be generated in the first scan and fully counted in the 

second scan. It also favors a homogeneous distribution as does the PARTITION. 

 

CARMA 

CARMA (Continuous Association Rule Mining Algorithm) [Hidb1999] brings the computation of large itemsets 

online. Being online, CARMA shows the current association rules to the user and allows the user to change the 

parameters, minimum support and minimum confidence, at any transaction during the first scan of the database. It 

needs at most 2 database scans. Similar to DIC, CARMA generates the itemsets in the first scan and finishes 

counting all the itemsets in the second scan. Different from DIC, CARMA generates the itemsets on the fly from the 

transactions. After reading each transaction, it first increments the counts of the itemsets which are subsets of the 

transaction. Then it generates new itemsets from the transaction, if all immediate subsets of the itemsets are currently 

potentially large with respect to the current minimum support and the part of the database that is read. For more 

accurate prediction of whether an itemset is potentially large, it calculates an upper bound for the count of the 

itemset, which is the sum of its current count and an estimate of the number of occurrences before the itemset is 

generated. The estimate of the number of occurrences (called maximum misses) is computed when the itemset is first 

generated.   

 

Parallel and Distributed Algorithms 

The current parallel and distributed algorithms are based on the serial algorithm Apriori. An excellent survey given 

in [Zaki1999] classifies the algorithms by load-balancing strategy, architecture and parallelism. Here we focus on the 

parallelism used: data parallelism and task parallelism [Chat1997]. The two paradigms differ in whether the 

candidate set is distributed across the processors or not. In the data parallelism paradigm, each node counts the same 
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set of candidates. In the task parallelism paradigm, the candidate set is partitioned and distributed across the 

processors, and each node counts a different set of candidates. The database, however, may or may not be partitioned 

in either paradigm theoretically. In practice for more efficient I/O it is usually assumed the database is partitioned 

and distributed across the processors. In the data parallelism paradigm, a representative algorithm is the count 

distribution algorithm in [Agrawal1996]. The candidates are duplicated on all processors, and the database is 

distributed across the processors.  Each processor is responsible for computing the local support counts of all the 

candidates, which are the support counts in its database partition. All processors then compute the global support 

counts of the candidates, which are the total support counts of the candidates in the whole database, by exchanging 

the local support counts (Global Reduction). 

 

Data Parallelism Algorithms 

The algorithms which adopt the data parallelism paradigm include: CD [Agrawal1996], PDM [Park1995], DMA 

[Cheung1996], and CCPD [Zaki1996]. These parallel algorithms differ in whether further candidate pruning or 

efficient candidate counting techniques are employed or not. The representative algorithm CD(Count Distribution) is 

described in details, and for the other three algorithms only the additional techniques introduced are described.  

 

CD 

In CD, the database D is partitioned into {D
1
, D

2
, …, D

p
} and distributed across n processors. Note that we use 

superscript to denote the processor number, while subscript the size of candidates. The program fragment of CD at 

processor i, 1 ≤ i ≤ p, is outlined in Algorithm 6.  There are basically three steps. In step 1, local support counts of 

the candidates Ck in the local database partition D
i
 are found. In step 2, each processor exchanges the local support 

counts of all candidates to get the global support counts of all candidates. In step 3, the globally large itemsets Lk are 

identified and the candidates of size k+1 are generated by applying apriori_gen() to Lk on each processor 

independently.  CD repeats steps 1 - 3 until no more candidates are found. CD was implemented on an IBM SP2 

parallel computer, which is shared-nothing and communicates through the High-Performance Switch. 

 

Algorithm : CD [Agrawal 1996] 

Input: 

I, s, D
1
, D

2
, …, D

p
 

Output: 

L 

Algorithm: 

1) C1=I; 

2)   for k=1;Ck≠∅;k++ do begin    

                  //step one: counting to get the local counts 

3)  count(Ck, D
i
); //local processor is i 

//step two: exchanging the local counts with other processors 
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//to obtain the global counts in the whole database. 

4)  forall itemset X ∈ Ck do begin 

5)   X.count=∑j=1
p
{X

j
.count}; 

6)  end 

//step three: identifying the large itemsets and 

//generating the candidates of size k+1 

7)  Lk={c ∈ Ck | c.count ≥ s × | D
1∪D

2∪…∪D
p
 |}; 

8)  Ck+1=apriori_gen(Lk); 

9) end 

10) return L=L1U L2 U  …U Lk; 

 

PDM (Parallel Data Mining) 

PDM (Parallel Data Mining) [Park1995a] is a modification of CD with inclusion of the direct hashing technique 

proposed in [Park1995].  The hash technique is used to prune some candidates in the next pass. It is especially useful 

for the second pass, as Apriori doesn't have any pruning in generating C2 from L1. In the first pass, in addition to 

counting all 1-itemsets, PDM maintains a hash table for storing the counts of the 2-itemsets. Note that in the hash 

table we don't need to store the 2-itemsets themselves but only the count for each bucket. For example, suppose {A, 

B} and {C} are large items and in the hash table for the 2-itemsets the bucket containing {AB, AD} turns out to be 

small (the count for this bucket is less than the minimum support count). PDM will not generate AB as a size 2 

candidate by the hash technique, while Apriori will generate AB as a candidate for the second pass, as no 

information about 2-itemsets can be obtained in the first pass. For the communication, in the k
th
 pass, PDM needs to 

exchange the local counts in the hash table for k+1-itemsets in addition to the local counts of the candidate k-

itemsets.  

 

DMA 

DMA (Distributed Mining Algorithm) [Cheung1996] is also based on the data parallelism paradigm with the 

addition of candidate pruning techniques and communication message reduction techniques introduced. It uses the 

local counts of the large itemsets on each processor to decide whether a large itemset is heavy (both locally large in 

one database partition and globally large in the whole database), and then generates the candidates from the heavy 

large itemsets. For example, A and B are found heavy on processor 1 and 2 respectively, that is, A is globally large 

and locally large only on processor 1, B is globally large and locally large only on processor 2. DMA will not 

generate AB as a candidate 2-itemset, while Apriori will generate AB due to no consideration about the local counts 

on each processor. For the communication, instead of broadcasting the local counts of all candidates as in CD, DMA 

only sends the local counts to one polling site, thus reducing the message size from O(p
2
) to O(p). DMA was 

implemented on a distributed network system initially, and was improved to a parallel version FPM(Fast Parallel 

Mining) on an IBM SP2 parallel machine [Cheung1998].  
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CCPD 

CCPD (Common Candidate Partitioned Database) [Zaki1996] implements CD on a shared-memory SGI Power 

Challenge with some improvements. It proposes techniques for efficiently generating and counting the candidates in 

a shared-memory environment. It groups the large itemsets into equivalence classes based on the common prefixes 

(usually the first item) and generates the candidates from each equivalence class. Note that the grouping of the large 

itemsets will not reduce the number of candidates but reduce the time to generate the candidates. It also introduces a 

short-circuited subset checking method for efficient counting the candidates for each transaction.  

 

Task Parallelism Algorithms 

The algorithms adopting the task parallelism paradigm include: DD [Agrawal1996], IDD [Han1997], HPA 

[Shintani1996] and PAR [Zaki1997]. They all partition the candidates as well as the database among the processors. 

They differ in how the candidates and the database are partitioned. The representative algorithm DD (Data 

Distribution) [Agrawal1996] is described in more detail, and for the other algorithms only the different techniques 

are reviewed. 

 

DD 

In DD (Data Distribution) [Agrawal1996], the candidates are partitioned and distributed over all the processors in a 

round-robin fashion. There are three steps. In step one, each processor scans the local database partition to get the 

local counts of the candidates distributed to it. In step two, every processor broadcasts its database partition to the 

other processors and receives the other database partitions from the other processors, then scans the received 

database partitions to get global support counts in the whole database. In the last step, each processor computes the 

large itemsets in its candidate partition, exchanges with all others to get all the large itemsets, and then generates the 

candidates, partitions and distributes the candidates over all processors. These steps continue until there are no more 

candidates generated. Note that the communication overhead of broadcasting the database partitions can be reduced 

by asynchronous communication [Agrawal1996], which overlaps communication and computation. The details are 

described in Algorithm 7. 

 

Algorithm : DD [Agrawal 1996] 

Input: 

I,s,D
1
, D

2
, …, D

p
 

Output: 

L 

Algorithm: 

1) C1
i⊆I; 

2) for (k=1;Ck
i≠∅;k++) do begin 



International Journal of Computing and Corporate Research 

ISSN (Online) : 2249-054X 

Volume 4 Issue 2 March 2014 

International Manuscript ID : 2249054XV4I2032014-16 

 

 

                        //step one: counting to get the local counts 

3)  count(Ck
i
 , D

i
); //local processor is i 

//step two: broadcast the local database partition to others, 

//  receive the remote database partitions from others, 

//  scan D
j
(1≤j≤p, j≠i) to get the global counts. 

4)  broadcast(D
i
); 

5)  for (j=1; (j≤p and j≠i);j++) do begin 

6)   receive(D
j
) from processor j; 

7)        count(Ck
i
 , D

j
);  

8)  end 

//step three: identify the large itemsets in C
i
k, 

//  exchange with other processors to get all large itemsets Ck, 

//  generate the candidates of size k+1, 

//  partition the candidates and distribute over all processors. 

9)  Lk
i 
={c|c∈C

i
k, c.count ≥ s∗|D

1∪D
2∪…∪D

p
|}; 

10)  Lk= U i=1 
p
(Lk

i
); 

11)  Ck+1 = apriori_gen(Lk); 

12)  Ck+1
i ⊆ Ck+1; //partition the candidate itemsets across the processors 

13) end 

14)  return L = L1U L2 U … U Lk; 

 

IDD 

IDD (Intelligent Data Distribution) is an improvement over DD [Han1997].   It partitions the candidates across the 

processors based on the first item of the candidates, that is, the candidates with the same first item will be partitioned 

into the same partition. Therefore, each processor needs to check only the subsets which begin with one of the items 

assigned to the processor.  This reduces the redundant computation in DD, as for DD each processor needs to check 

all subsets of each transaction, which introduces a lot of redundant computation. To achieve a load-balanced 

distribution of the candidates, it uses a bin-packing technique to partition the candidates, that is, it first computes for 

each item the number of candidates that begin with the particular item, then it uses a bin-packing algorithm to assign 

the items to the candidate partitions such that the number of candidates in each partition is equal.  It also adopts a 

ring architecture to reduce communication overhead, that is, it uses asynchronous point to point communication 

between neighbors in the ring instead of  broadcasting.   

 

Comparison of Algorithms 

Algorithm Scan Comments 

AIS m+1 Suitable for low cardinality sparse transaction database; 

Single consequent  

SETM m+1 SQL compatible 
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Apriori m+1 Transaction database with moderate cardinality; 

Outperforms both AIS and SETM; Base algorithm for 

parallel algorithms 

Apriori-TID m+1 
Very slow with larger number of kC ; 

Outperforms Apriori with smaller number of kC ; 

Apriori-

Hybrid 

m+1 Better than Apriori. However, switching from Apriori to 

Apriori-TID is expensive; Very crucial to figure out the 

transition point. 

OCD 2 Applicable in large DB with lower support threshold.  

Partition 2 Suitable for large DB with high cardinality of data; 

Favors homogenous data distribution 

Sampling 2 Applicable in very large DB with lower support. 

DIC Depe

nds 

on 

interv

al size 

Database viewed as intervals of transactions; Candidates 

of increased size are generated at the end of an interval 

CARMA 2 Applicable where transaction sequences are read from a 

Network; Online, users get continuous feedback and 

change support and/or confidence any time during 

process. 

CD m+1 Data Parallelism. 

PDM m+1 Data Parallelism; with early candidate pruning 

DMA m+1 Data Parallelism; with candidate pruning 

 

 

Algorithm Scan Data structure Comments 

CCPD m+1 Hash table and tree Data Parallelism; on shared-memory machine 

DD m+1 Hash table and tree Task Parallelism; round- robin partition 

IDD m+1 Hash table and tree Task Parallelism; partition by the first items 

HPA m+1 Hash table and tree Task Parallelism; partition by hash function 

SH m+1 Hash table and tree Data Parallelism; candidates generated independently by 

each processor. 

HD m+1 Hash table and tree Hybrid data and task parallelism;  grid parallel 

architecture 
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CONCLUSION AND SUMMARY 

Most association rule algorithms assume a static database.  With these approaches the algorithm must be performed 

completely against each new database state to be able to generate the new set of association rules.  In large databases 

or volatile databases, this may not be acceptable.  There have been many proposals to facilitate the maintenance of 

association rules.  These approaches are often referred to as incremental updating strategies when only additions to 

the transaction database are considered. The first incremental updating strategy was call Fast Update (FUP).  The 

problem with incremental updating is to find the large itemsets for a database D∪db where both D and db are sets of 

transactions and the set of large itemsets, L, for D is already known.  FUP is based on the Apriori algorithm.  For 

each iteration, only db is scanned using the known set of large itemsets of size k, Lk, from D as the candidates.  This 

is used to remove the candidates which are no longer large in the larger database, D∪db.  Simultaneously a set of 

new candidates is determined.  Three variations of this algorithm have subsequently been proposed which create less 

candidates, FUP* and FUP2, and are applicable for multi-level association rules, MLUp. Another approach to 

maintaining association rules is based on the idea of sampling. 
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