
International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 3 May 2014

International Manuscript ID : 2249054XV4I3052014-30

A PRAGMATIC REVIEW OF DISTRIBUTED DATABASE SYSTEMS AND

RELATED ASPECTS

Hitu Kalra

M.Tech. Research Scholar

Shree Siddhivinayak Group of Institutions

Shahpur-Bilaspur, Distt. Yamuna Nagar, Haryana, India

Prof. Ajay Kumar

Shree Siddhivinayak Group of Institutions

Shahpur-Bilaspur, Distt. Yamuna Nagar, Haryana, India

ABSTRACT

A distributed system is a piece of software that

ensures that a collection of independent computers

that are interconnected by a computer network,

appears to its users as a single coherent system and

that cooperate in performing certain assigned tasks.

As a general goal, distributed computing systems

partition a big, unmanageable problem into smaller

pieces and solve it efficiently in a coordinated

manner. The economic viability of this approach

stems for two reasons: (1) more computer power is

harnessed to solve a complex task, and (2) each

autonomous processing element can be managed

independently and develop its own application. The

word distributed referred to computer networks

where individual computers were physically

distributed within some geographical area. The

terms are nowadays used in a much wider sense,

even referring to autonomous processes that run on

the same physical computer and interact with each

other by message passing. This paper highlights

various parameters and aspects of the distributed

databases and related arguments.

Keywords – Distributed Databases, Query

Optimization, Performance of Distributed Systems

Distributed Database System

A distributed database (DDB) consists of a

collection of multiple logically interrelated

databases distributed over multiple sites connected

by some form of communication network. A

distributed database management System

(distributed DBMS) is a software system that

manages a distributed database while making the

distribution transparent to the user. The term

distributed database system (DDBS) is typically

used to refer to the combination of DDB and the

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 3 May 2014

International Manuscript ID : 2249054XV4I3052014-30

distributed DBMS. In this system each site is able

to process local transactions; in addition a site may

participate in the execution of global transactions:

those transactions that access data in several sites.

The execution of global transactions requires

communication among sites. Although

geographically dispersed, a distributed database

system manages and controls the entire database as

a single collection of data.

ANSISPARC (American National Standards

Institute, Standards Planning And Requirements

Committee) represented an abstract design standard

for a DDBMS.

Figure 1 - Design Standard for Distributed Database System

The global level permits the integration of local

databases in a global database by using the global

scheme, the fragmentation scheme and the

allocation scheme. The global scheme defines all

the information contained in a network distributed

database and is described by a set of global

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 3 May 2014

International Manuscript ID : 2249054XV4I3052014-30

relations. Every global relation can be split in many

disjunctive parts called fragments.

The fragmentation scheme describes the

connections between the global relation and its

fragments. This is a one-to-many type of scheme

and has the form of a hierarchy. The fragments are

logical parts of the global relations that can be

physically allocated on one or more nodes of the

network.

The allocation scheme describes the distribution

mode of the segments on the nodes of the network.

Every segment will have a physical allocation on

one or more nodes. The allocation scheme

introduces a minimum controlled redundancy, so

that a certain segment can be located on multiple

nodes of the network.

The local level treats every local database like a

centralized database. At this level, the local

scheme, which depends on local DBMS, makes the

correspondence between the physical global

relations on that node and the objects manipulated

by the local DBMS.

Distributed database may be homogeneous or

heterogeneous database system.

Figure 2 - Homogeneous Distributed Database System

In homogeneous distributed database system, all

sites of the database system have identical setup,

i.e., same database system software, common

schema and database system code but the

underlying operating system may be different

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 3 May 2014

International Manuscript ID : 2249054XV4I3052014-30

In heterogeneous distributed database system, each

site may run under the control of different database

system/software where the schemas and system

code may differ.

Distributed Database System Architecture

Following three architectures are used in

distributed database systems:

• Client/server architecture

• Collaborating server system

• Middleware system

 Client/server Architecture

Client/server architectures are those in which a

DBMS- related workload is split into two logical

components namely client and server, each of

which typically executes on different systems

Client is the user of the resource whereas the server

is a provider of the resource. Client/Server

architecture has one or more client processes and

one or more server processes. Distributed database

systems traditionally adopt a client-server

architecture consisting of client and server

processes. In a client-server architecture there

exists a clean separation of responsibility between

client processes and server processes. Data is stored

at server sites that run server processes that provide

access to their local data to client processes. Client

sites run client processes that provide an interface

between users and the data residing in the system.

Techniques for Distributed Database Design

Data Fragmentation

Technique of breaking up the database into logical

units, which may be assigned for storage at the

various sites, is called data fragmentation. In the

data fragmentation, a relation can be partitioned (or

fragmented) into several fragments for physical

storage purposes.[6] These fragments contain

sufficient information to allow reconstruction of the

original relation. All fragments of a given relation

will be independent. There are three different

schemes for fragmenting a relation:

� Horizontal fragmentation

� Vertical fragmentation

� Mixed fragmentation

Horizontal fragmentation

A horizontal fragment of a relation is a subset of

the tuples (rows) with all attributes in that relation.

Horizontal fragmentation splits the relation

“horizontally” by assigning each tuple or group

(subset) of tuples of a relation to one or more

fragments, where each tuple or a subset has a

certain logic meaning i.e. tuples that belong to

horizontal fragment are specified by a condition on

one or more attributes.

Horizontal Fragmentation

It is defined using the select operation of the

relational algebra. The original relation is obtained

by UNION operation.

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 3 May 2014

International Manuscript ID : 2249054XV4I3052014-30

Vertical Fragmentation

Vertical fragmentation splits the relation by

decomposing “vertically” by columns (attributes).

A vertical fragment of a relation keeps only certain

attributes of the relation at a particular site because

each site may not need all the attribute of a relation.

JOIN operation is done to reconstruct the original

relation.

Mixed Fragmentation

Sometimes, horizontal or vertical fragmentation of

a database schema by itself is insufficient to

adequately distribute the data for some applications

so, mixed or hybrid fragmentation is required.

Thus, Horizontal (or vertical) fragmentation of a

relation, followed by further vertical (or horizontal)

fragmentation of some of the fragments, is called

mixed fragmentation. A mixed fragmentation is

defined using the select and project operations of

the relational algebra.

Data Replication

Data replication is a technique that permits storage

of certain data in more than one site. The system

maintains several identical replicas (copies) of the

relation and stores each replica at a different site.

Typically, data replication is introduced to increase

the availability of the system. When a copy is not

available due to site failure(s), it should be possible

to access another copy. The most extreme case is

replication of the whole database at every site in

the distributed system, thus creating a fully

replicated distributed database. Full replication

makes the concurrency control and recovery

techniques more expensive than they would be if

there was no replication. Like fragmentation, data

replication should also support replication

independence. The other extreme from full

replication involves having no replication - that is,

each fragment is stored at exactly one site. In this

case, all fragments must be disjoint, except for the

repetition of primary keys among vertical (or

mixed) fragments. This is also called non redundant

allocation.

Data Allocation

Each fragment – or each copy of a fragment – must

be assigned to a particular site in the distributed

system. This process is called data distribution (or

data allocation). The choice of sites and the degree

of replication depend on the performance and

availability goals of the system and on the types

and frequencies of transactions submitted at each

site. For example, if high availability is required

and transactions can be submitted at any site and if

most transactions are retrieval only, a fully

replicated database is a good choice. However, if

certain transactions that access particular parts of

the database are mostly submitted at a particular

site, the corresponding set of fragments can be

allocated at that site only. Data that is accessed at

multiple sites can be replicated at those sites. If

many updates are performed, it may be useful to

limit replication. Finding an optimal or even a good

solution to distributed data allocation is a complex

optimization problem..

Advantages

� Management of distributed data with

different levels of transparency like

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 3 May 2014

International Manuscript ID : 2249054XV4I3052014-30

Distribution or network transparency,

fragmentation transparency, replication

transparency. It makes the user unaware of

operational details of the network, existence

of copies of data and existence of fragments.

� Availability and Reliability: In distributed

database systems, the availability of the data

increases because the replicas of the data are

distributed at different sites. It also increases

the reliability because if the one site fails, then

data can be accessed from the other site where

its replica is present. So, in distributed

environment, failure of one site does not

result in unavailability of the data.

� Localization: means the data is present as

close to the site where it is needed, therefore

data can be accessed in less time and data

transfer time also reduces.

� Improved Performance: Because the data is

stored on multiple sites, so the overhead on

one machine decreases which improves the

performance.

� Easier expansion: In a distributed

environment, expansion of the system in

terms of adding more data, increasing

database sizes, or adding more processors is

much easier.

� Local autonomy or site autonomy: A

department can control the data about them

(as they are the ones familiar with it.)

� Protection of valuable data: If there were

ever a catastrophic event such as a fire, all of

the data would not be in one place, but

distributed in multiple locations.

� Economics: It costs less to create a network

of smaller computers with the power of a

single large computer.

� Modularity: systems can be modified, added

and removed from the distributed database

without affecting other modules (systems).

� Reliable transactions: Due to replication of

database.

Distributed query processing and optimization

Query processing is an important concern in the

field of distributed databases. The main problem is:

if a query can be decomposed into sub queries that

require operations at geographically separated

databases, determine the sequence and the sites for

performing this set of operations such that the

operating cost (communication cost and processing

cost) for processing this query is minimized. The

problem is complicated by the fact that query

processing not only depends on the operations of

the query, but also on the parameter values

associated with the query. Distributed query

processing is an important factor in the overall

performance of a distributed database system.

Therefore, it is important here to optimize on the

time required to access such a query, which will be

largely comprised of the time spent in transmitting

data between sites rather and not the time spent on

retrieval from the disk storage or computation.

P. Valduriez has described a methodology of

distributed query processing. The input is a query

on distributed data expressed in relational calculus.

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 3 May 2014

International Manuscript ID : 2249054XV4I3052014-30

Figure 3 - Distributed Query Processing

QUERY

DECOMPOSITION

CALCULUS QUERY ON GLOBAL

RELATIONS

ALGEBRAIC QUERY ON GLOBAL RELATIONS

DATA LOCALIZATION

ALGEBRAIC QUERY ON

FRAGMENTS

GLOBAL

OPTIMIZATION

DISTRIBUTED QUERY EXECUTION PLAN

DISTRIBUTED

EXECUTION

GLOBAL

SCHEMA

FRAGMENT

SCHEMA

ALLOCATION

SCHEMA

CONTROL

SITE

LOCAL

SITES

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 3 May 2014

International Manuscript ID : 2249054XV4I3052014-30

Four main layers are involved in distributed query

processing. The first three layers map the input

query into an optimized sequence of distributed

query execution plan They perform the functions of

query decomposition, data localization, and global

query optimization. Query decomposition and data

localization correspond to query rewriting.

The first three layers are performed by a central

control site and use schema information stored in

the global directory. The fourth layer performs

distributed query execution by executing the plan

and returns the answer to the query. It is done by

the local sites.

The general scheme for the execution of a

distributed query is as follow:

� The execution of a request begins with the

global request represented using the relational

computations. This request is addressed to

some global relations, data distribution being

invisible at this level.

� This request is decomposed in sub requests

expressed with relational algebra operators.

These sub requests change from global sub

requests in requests addressed to the global

relations fragments, using information about

the fragmentation scheme.

� The global optimization tries to find the best

order of operations within sub requests

addressed to the fragments, including the

communication operations that minimize cost

function.

� Local optimization of every sub request at a

certain node is reviewed using information

from local scheme.

These four phases realize decomposition of the

global request into a sequence of local optimized

operations, each of them acting on a local database.

LITERATURE REVIEW

Distributed Databases are becoming very popular

now a day. Today’s business environment has an

increasing need for distributed database and

Client/server applications as the desire for reliable,

scalable and accessible information is Steadily

rising. Distributed database systems provide an

improvement on communication and data

processing due to its data distribution throughout

different network sites. Not Only is data access

faster, but a single-point of failure is less likely to

occur, and it provides local control of data for

users, as suggested by Swati Gupta et al.

Query optimization is an important part of database

management system. Query optimization has been

one of the research focuses of database area,

although many researchers have done a lot of work,

but the not commensurate with the successful

application of relational database technology in

data processing is multi-join query optimization has

been a problem not well resolved in relational

database systems, as suggested by Fan Yuanyuan et

al. .

E-business sites are increasingly utilizing dynamic

web pages. Dynamic page generation technologies

allow a Web site to generate pages at run-time. But

very little work has been done so far to address the

dynamic page generation delays. Proposed

approach is based on concept of caching entire

pages of dynamically generated content. The

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 3 May 2014

International Manuscript ID : 2249054XV4I3052014-30

novelty of our approach lies not only in the caching

of dynamic page fragments, but also in the

utilization of intelligent cache management

strategies as suggested by Neera Batra et al.

Reza Ghaemi, Amin Milani Fard, et al. suggested

that due to new distributed database applications

such as huge deductive database systems, the

search complexity is constantly increasing and we

need better algorithms to speedup traditional

relational database queries. An optimal dynamic

programming method for such high dimensional

queries has the big disadvantage of its exponential

order and thus we are interested in semi-optimal

but faster approaches.

Task allocation in Distributed computing systems

(DCS) is an important research problem. When

resource to be shared in DCS is a database that

system is classified as Distributed database system

(DDBS). In DDBS systems Data & operation

allocation are both closely interrelated & highly

dependent on each other. General models and

objective function can be treated as basic platform

for research in this area of task allocation An

objective function can be derived by modifying the

terms present in general model ,which in turn

depend on characteristics of the system concerned

ex. Distributed computing system, distributed

database system, parallel system & multiprocessors

etc. In DCS the software application is called a task

and is a set of cooperating modules. For achieving

a fast response time from such systems, an efficient

assignment of the application tasks to the

processors is imperative as suggested by Suchita

Upadhyaya et al.

A distributed system database performance is

strongly related to the fragment allocation in the

nodes of the network. A heuristic algorithm for

redistributing the fragments is proposed by

Țambulea L., et al.. The algorithm uses the

statistical information relative to the requests send

to a distributed database. This algorithm minimizes

the size of the data transferred for solving a request.

Assuming that a distribution of the fragments in the

nodes of a network is known, the algorithm

generates a plan to transfer data fragments, plan

that will be used to evaluate a request.

Semi-join reducers were introduced in the late

seventies as a means to reduce the communication

costs of distributed database systems. Subsequent

work done by Stocker, Kossman et al in the

eighties showed, however, that semi-join reducers

are rarely beneficial for the distributed systems of

that time. They showed that semi-join reducers can

indeed be beneficial in modern client-server or

middleware systems -- either to reduce

communication costs or to better exploit all the

resources of a system. Furthermore, they presented

and evaluated alternative ways to extend state-of-

the-art (dynamic programming) query optimizers in

order to generate good query plans with semi-join

reducers. They presented two variants, called

Access Root and Join Root, which differ in their

implementation complexity, their running times,

and the quality of plans they produce. They

presented the results of performance experiments

that compare both variants with a traditional query

optimizer.

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 3 May 2014

International Manuscript ID : 2249054XV4I3052014-30

A multi database model of distributed information

retrieval is proposed by J. Callan et al in which

people are assumed to have access to many

searchable text databases. In such an environment,

full text information retrieval consists of

discovering databases contents, ranking databases

by their expected ability to satisfy the query,

searching a small number of databases and merging

results returned by different databases.

Distributed data processing is becoming a reality.

Businesses want to do it for many reasons, and they

often must do it in order to stay competitive. While

much of the infrastructure for distributed data

processing is already there (e.g., modern network

technology), a number of issues make distributed

data processing still a complex undertaking, as

suggested by Donald Kossman, et al.[9]: (1)

distributed systems can become very large,

involving thousands of heterogeneous sites

including PCs and mainframe server machines; (2)

the state of a distributed system changes rapidly

because the load of sites varies over time and new

sites are added to the system; (3) legacy systems

need to be integrated—such legacy systems usually

have not been designed for distributed data

processing and now need to interact with other

(modern) systems in a distributed environment. He

presented the state of the art of query processing

for distributed database and information systems.

He presented the “textbook” architecture for

distributed query processing and a series of

techniques that are particularly useful for

distributed database systems. These techniques

include special join techniques, techniques to

exploit intra query parallel, techniques to reduce

communication costs, and techniques to exploit

caching and replication of data. Furthermore, the

paper discusses different kinds of distributed

systems such as client-server, middleware (multi

tier), and heterogeneous database systems, and

shows how query processing works in these

systems.

P. Griffiths Selinger, et al. claimed that high level

query and data manipulation languages such as

SQL, requests are stated non-procedurally, without

reference to access paths. They described how

System R chooses access paths for both simple

(single relation) and complex queries (such as

joins), given a user specification of desired data as

a Boolean expression of predicates. System R is an

experimental database management system

developed to carry out research on the relational

model of data. System R was designed and built by

members of the IBM San Jose Research

Laboratory.

Yannis E. loannidis et al. described query

optimization for relational database systems as a

combinatorial optimization problem, which makes

exhaustive search unacceptable as the query size

grows. Randomized algorithms, such as Simulated

Annealing (SA) and Iterative Improvement (II), are

viable alternatives to exhaustive search. They

adapted these algorithms to the optimization of

project-select-join queries. They tested them on

large queries of various types with different

databases, concluding that in most cases SA

identifies a lower cost access plan than II. To

explain this result, they studied the shape of the

cost function over the solution space associated

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 3 May 2014

International Manuscript ID : 2249054XV4I3052014-30

with such queries and we have conjectured that it

resembles a 'cup' with relatively small variations at

the bottom. This has inspired a new Two Phase

Optimization algorithm, which is a combination of

Simulated Annealing and Iterative Improvement.

Experimental results show that Two Phase

Optimization outperforms the original algorithms

in terms of both output quality and running time.

Chin-Wan Chung, et al. addressed the processing

of a query in distributed database systems using a

sequence of semi joins. The objective was to

minimize the intersite data traffic incurred by a

distributed query. He developed a method which

accurately and efficiently estimates the size of an

intermediate result of a query. This method

provided the basis of the query optimization

algorithm. He presented a heuristic algorithm to

determine a low-cost sequence of semi joins.

Furthermore he provided the cost comparison with

an existing algorithm. He measured the scheduling

time for sequences of semi joins for example

queries using the PASCAL program which

implements the algorithm.

Philip A Bernstein, et al. described the techniques

used to optimize relational queries in the SDD-1

distributed database system. They translated each

Data language query into a relational calculus form

called an envelope and concerned with the

optimization of envelopes. They proposed

envelopes in two phases. The first phase executes

relational operations at various sites of the

distributed database in order to delimit a subset of

the database that contains all data relevant to the

envelope. This subset is called a reduction of the

database. The second phase transmits the reduction

to one designated site, and the query is executed

locally at that site. They presented an algorithm

that constructs a cost-effective program of semi

joins, given an envelope and a database.

CONCLUSION

The optimization of queries in distributed systems

is a complex activity that depends on many factors.

In a certain percent it is performed by the DBMS,

but there are situations when the user applications

must contain algorithms for the query optimization.

I studied many related work and found out that

very few work addressed the problem of

considering run-time conditions in query

optimization. By analyzing both theoretically and

experimentally, I have presented the need to take

run-time conditions, including CPU utilities in the

data sources and network environment, into

account in optimization process.

This work studies underlines the distributed

database systems and related aspects. In the future

scope, this work shall implement the prototype

system with the proposed architecture and

optimization algorithm. The experimental results

shall show the capabilities and efficiency of join

query optimization algorithm and give the target

environment where the algorithm performs better

than other related approaches and predict the best

plan for a join query.

REFERENCES

[1] Swati Gupta, Kuntal Saroba, Bhawna,

“Fundamental Research of Distributed

Database”, International Journal of

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 3 May 2014

International Manuscript ID : 2249054XV4I3052014-30

Computer Science and Management

Studies, pp. 138-146, 2011

[2] Fan Yuanyuan, Mi Xifeng, “Distributed

Database System Query Optimization

Algorithm Research”, IEEE international

conference on Computer Science and

Information Technology (ICECT), pp.145-

149, 2011

[3] Neera Batra, A. K. Kapil, “Three Tier

Cache Based Query Optimization Model

in Distributed Database”, IJEST, vol. 2,

2010, pp. 3206-3212

[4] Reza Ghaemi, Amin Milani Fard, Hamid

Tabatabee, Mahdi Sadaghizadeh,

“Evolutionary Query optimization for

Heterogeneous Distributed Database

Systems” ,World Academy of Science,

Engineering and Technology, pp. 43-49,

2008

[5] S. Upadhyaya and S. Lata, "Task

Allocation in Distributed Computing VS

Distributed Database Systems: A

Comparative Study", IJCNS (International

Journal of Computer Science and Network

Security),vol. 8:3, pp. 338-346, 2008.

[6] Țambulea L., Horvat-Petrescu M.,

“Redistributing Fragments into a

Distributed Database, International

Journal of Computers Communications &

Control”, ISSN 1841-9836, 3(4):384-394,

2008.

[7] Stocker, Kossman, Braumandl, Kemper,

“Integrating Semi Join Reducers into state

of the art query processors”, ICDE, pp.

143-156 , 2001

[8] J. Callan, “Distributed Information

Retrieval ” , W. B. Croft, Ed. Kluwer

Academic Publishers, pp. 127-150, 2000

[9] D. Kossman, “The state of the art in

distributed query processing” , ACM

Computing Surveys, pp. 422-469, 1998

[10] P. Griffiths, Selinger, M. M. Astrahan,

D. D. Chamberlin, R.A. Lorie, T. G. Price,

“Access path selection in a rational

database management system”, Morgan

Kauffman series in Data Management

Systems, pp. 141-152, 1998

[11] Yannis. E. Loannidis and Youngkyung

Cha Kang, “Randomized Algorithms for

optimizing large Join Queries”, ACM

Computing Surveys, pp. 47-53, 1990

[12] Chin-Wan Chung, “An Optimization of

Queries in Distributed Database Systems”,

Journal of Parallel and Distributed

Computing 3, pp. 137-157, 1986

[13] Philip A Bernstein and Nathan

Goodman, Engene Wong, Christopher L.

Reeve and James B. Rothnie, “Query

Processing in a System for Distributed

Databases(SDD – 1), ACM Transactions

on Database Systems, vol. 6, no. 4, 1981,

pp. 602-625

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 4 Issue 3 May 2014

International Manuscript ID : 2249054XV4I3052014-30

[14] Li, Vector O. K. , “Query Processing in

distributed databases” , MIT. Lab. For

Information and Decision Systems, pp.

1107, 1981

[15] Huang, Kuan – Tsae, Davenport, Wilbur

B., “Query Processing in Distributed

Heterogeneous Systems”, MIT Laboratory

for information and Decision Systems, pp.

45-49 , 1981

[16] B.M. Monjurul Alom, Frans Henskens

and Michael Hannaford, “Query

Processing and Optimization in

Distributed Database Systems”, IJCSNS

International Journal of Computer Science

and Network Security, vol.9 no.9, 2009,

pp. 143-152

[17] Syam Menon, “Allocating fragments in

distributed Database”, IEEE Transactions

on Parallel and Distributed Systems, pp.

577-585, 2005

[18] D. Kossmann, K. Stocker, “Iterative

Dynamic Programming: A New Class of

Query optimization Algorithms”, ACM

Computing Surveys, pp. 422-469, 2000

[19] Lee Chiang, Chi-sheng shin, Yaw-huei

chen, “Optimizing large join queries using

a graph based approach”, IEEE

Transactions on Knowledge and Data

Engineering, pp. 441-450, 2006

[20] Tsai, P.S.M, Chen A.L.P, “Optimizing

queries with foreign function in a

distributed environment”, IEEE

Transactions on Knowledge and Data

Engineering, pp.809-824, 2002

