
International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 3 May 2015

International Manuscript ID : 2249054XV5I3052015-10

A SURVEY OF SQL INJECTION ATTACK: CAUSE OF

WEBSITE VUNERABILITIES

Kanika Sunita Rani

Computer Science & Engineering Department Computer Science & Engineering Department

Universal Group of Institution College, Lalru Universal Group of Institution College, Lalru

Abstract:- Web applications provide end users with

client access to server functionality through a set of

Web pages. Web applications are currently subject to

a .excess of successful attacks, such as cross-site

scripting, cookie theft, session riding, browser

hijacking, and the recent self-propagating worms in

Web-based email and social networking sites. This

paper looks at Web application vulnerabilities attack.

SQL injection attack is one of the main reason of the

Websites vulnerabilities.SQL injection is an attack

methodology that targets the data residing in a

database through the firewall that shields it. The

attack takes advantage of poor input validation in

code and website administration.The aim of this

paper is to study about SQL injection attacks process.

Keywords:-Tautologies,Union Query, Blind

Injection, Timing Attacks,Website Vulnerabilities.

I. INTRODUCTION

A security exploit in which an attacker is trying to get

access to Web resources by the

insertion of structured query language code to a web

form input box is called SQL injection. Most of the

times what happens is that when a user his or her

name and password in the log in box provided for

them, those values get inserted into the SELECT

query. Then they are matched with the expected

values to grant or deny access. If no way is provided

to prevent input other than name and password,

attackers can send their own request in this box and

download whole database etc in illicit ways.

Website Vulnerabilities: - Vulnerability means a

flaw in a system that can put down it release to

attack. Vulnerability can also refer to any type of

weakness in a computer system itself, in a set of

actions, or in anything that leaves information

security exposed to a threat.

SQL:-SQL (Structured Query Language) is a textual

language used to interact with relational Database.

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 3 May 2015

International Manuscript ID : 2249054XV5I3052015-10

The typical unit of execution of SQL is the ‘query’,

which is a collection of statements that typically

return a single ‘result set’. SQL statements can

modify the structure of databases and manipulate the

contents of databases by using various DDL, DML

commands respectively. SQL Injection occurs when

an attacker is able to insert a series of SQL

statements into a query by manipulating data input

into an application.

Definition of SQLIA Most web applications today

use a multi-tier design, usually with three tiers: a

presentation, a processing and a data tier. The

presentation tier is the HTTP web interface, the

application tier implements the software

functionality, and the data tier keeps data structured

and answers to requests from the application tier.

Meanwhile, large companies developing SQL-based

database management systems rely heavily on

hardware to ensure the desired performance. SQL

injection is a type of attack which the attacker adds

Structured Query Language code to input box of a

web form to gain access or make changes to data.

SQL injection vulnerability allows an attacker to flow

commands directly to web applications underlying

database and destroy functionality or confidentiality.

In logic, a tautology is a formula which is true in

every possible interpretation. In a tautology-based

attack the code is injected using the conditional OR

operator such that the query always evaluates to

TRUE. Tautology-based SQL injection attacks are

usually bypass user authentication and extract data by

inserting a tautology in the WHERE clause of a SQL

query. The query transform the original condition

into a tautology, causes all the rows in the database

table are open to an unauthorized user. A typical SQL

tautology has the form "or <comparison

expression>", where the comparison expression uses

one or more relational operators to compare operands

and generate an always true condition. If an

unauthorized user input user id as abcd and password

as anything' or 'x'='x then the resulting query will be:

select * from user_details where userid = 'abcd' and

password = 'anything' or 'x'='x'

The example is already explained in "Example of a

SQL injection attack"

Web applications provide end users with client access

to server functionality through a set of Web pages.

Web applications are currently subject to a excess of

successful attacks, such as cross-site scripting, cookie

theft, session riding, browser hijacking, and the

recent self-propagating worms in Web-based email

and social networking sites . This paper looks at Web

application vulnerabilities attack. SQL injection

attack is one of the main reason of the Websites

vulnerabilities.SQL injection is an attack

methodology that targets the data residing in a

database through the firewall that shields it. The

attack takes benefits of poor input validation in code

and website administration. SQL Injection Attacks o

comes when an attacker is able to insert a series of

SQL statements in to a ‘query’ by manipulating user

input data in to a web-based application, attacker can

take benefits of web application programming

security flaws and pass unexpected malicious SQL

statements through a web application for execution

by the backend Database. The aim of this research is

to study about SQL injection attacks process.

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 3 May 2015

International Manuscript ID : 2249054XV5I3052015-10

Website Vulnerabilities:-There are various types of

website vulnerabilities [8]

1. Cross site scripting: - The “most prevailing and

malicious” Web application security vulnerability,

XSS flaw occur when an application sends user data

to a web browser without first validating or encoding

the content. This lets hackers execute malevolent

scripts in a browser, hire them take control user

sessions, disfigure Web sites, insert hostile content

and conduct phishing and malware attacks.

2. Injection defect: - When user-supplied data is sent

to interpreters as part of a command, hackers catch

the interpreter which interprets text-based commands

into executing unintentional commands. “Injection

flaws allow attackers to read, update, create or delete

any random data available to the application. In the

worst-case situation, these flaws permit an attacker to

entirely compromise the application and the

necessary systems, even bypassing extremely nested

firewalled environments.”

3. Execution of Malicious file:-Hackers can

accomplish remote code execution, totally

conciliation a system. Any type of Web application is

vulnerable if it accepts filenames or files from users.

The vulnerability can be most widespread with PHP,

a normally used scripting language for Web

development.

4. Insecure direct object reference:-Attackers

operate direct object references to gain unauthorized

access to other objects. It happens when form

parameters include references to objects such as

database records or keys, directories. Banking Web

sites generally use a customer account number as the

primary key, and May interpretation account numbers

in the Web interface. “An attacker may attack these

parameters simply by guessing or searching for

another valid key. Frequently, these are in arranging

in nature.”

5.Cross site request imitation:-“Simple and

devastating,” this attack takes control of victim’s

browser when it is logged onto a Web site, and sends

malevolent requests to the Web application. Web

sites are enormously susceptible, partly because they

tend to authorize requests based on session cookies

functionality. Banks are potential targets. “Ninety-

nine percent of the applications on the Internet are

susceptible to cross site request forgery.”

6. Information escape and improper error

handling: - Error messages that applications generate

and present to users are useful to hackers when they

violate privacy or accidentally leak information about

the program’s configuration and internal workings.

Web applications will often reveal information about

their internal state through detailed or debug error

messages. Often, this information can be leveraged to

start or even automate more potent attacks.

7. Broken authentication and session

management:-User and administrative account can

be hijacked when applications are unsuccessful to

protect credentials and session token from starting to

last. Watch out for privacy violations and the

undermining of authorization and accountability

controls. Imperfection in the main verification

mechanism are not exceptional but weaknesses are

more frequently introduced through ancillary

authentication functions such as password

management, and time out, remember me, secret

question, log out and account update.

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 3 May 2015

International Manuscript ID : 2249054XV5I3052015-10

 8. Insecure cryptographic storage: - Many Web

developers are unsuccessful to encrypt responsive

data in storage even though cryptography is a key

part of most Web applications. When encryption is

there it’s frequently inefficiently designed with

incompatible cipher. These flaws can go ahead to

exposé of vulnerable data and compliance violations.

9. Insecure communications: - This is a failure to

encrypt network traffic when it’s necessary to protect

sensitive communications. Attackers can be able to

access unprotected conversations, with transmissions

of credentials and responsive information.PCI

standards require encryption of credit card

information transmitted over the Internet.

10. Failure to limit URL access: - Web pages are

supposed to be restricted to a small subset of

confidential users such as administrators. There is no

real protection of these pages, and hackers can

discover the URLs by making well-informed guesses.

The attacks target these liabilities are called forced

browsing which encompasses guessing links and

brute force techniques to find unprotected page.

2.Literature Review

Fu et al., in [12] propose a Static Analysis

Framework in order to detect SQL Injection

Vulnerabilities. SAFELI framework aims at

identifying the SQL Injection attacks during the

compile-time. This static analysis tool has two main

advantages. Firstly, it does a White-box Static

Analysis and secondly, it uses a Hybrid-Constraint

Solver. For the Whitebox Static Analysis, the

proposed approach considers the byte-code and deals

mainly with strings. For the Hybrid- Constraint

Solver, the method implements an efficient string

analysis tool which is able to deal with Boolean,

integer and string variables.

Thomas et al., in [13] suggest an automated prepared

statement generation algorithm to remove SQL

Injection Vulnerabilities (SQLIVs). They implement

their research work using four open source projects

namely: (i) Net-trust, (ii) ITrust, (iii) WebGoat, and

(iv) Roller. Based on the experimental results, their

prepared statement code was able to successfully

replace 94% of the SQLIVs in four open source

projects. However, the experiment was conducted

using only Java with a limited number of projects.

Hence, the wide application of the same approach

and tool for different settings still remains an open

research issue to investigate.

In [14], Haixia and Zhihong propose a secure

database testing design for Web applications. They

suggest a few things; firstly, detection of potential

input points of SQL Injection; secondly, generation

of test ca1ses automatically, then finally finding the

database vulnerability by running the test cases to

make a simulation attack to an application. The

proposed methodology is shown to be efficient as it

was able to detect the input points of SQL Injection

exactly and on time as the authors expected.

However, after analyzing the scheme, we find that

the approach is not a complete solution but rather it

needs additional improvements in two main aspects:

the detection capability and the development of the

attack rule library

In [15] Ruse et al. propose a technique that uses

automatic test case generation to detect SQL

Injection Vulnerabilities. The main idea behind this

framework is based on creating a specific model that

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 3 May 2015

International Manuscript ID : 2249054XV5I3052015-10

deals with SQL queries automatically. In addition,

the approach identifies the relationship (dependency)

between sub-queries. Based on the results, the

methodology is shown to be able to specifically

identify the causal set and obtain 85% and 69%

reduction respectively while experimenting on few

sample examples. Moreover, it does not produce any

false positive or false negative and it is able to detect

the real cause of the injection.

In [16], Roichman and Gudes, in order to secure Web

application databases, suggest using a fine-grained

access control to Web databases. They develop a new

method based on fine-grained access control

mechanism. The access to the database is supervised

and monitored by the built-in database access control.

This approach is efficient in the fact that the security

and access control of the database is transferred from

the application layer to the database layer.

In [17], Shin et al. suggest SQLUnitGen, a Static-

analysisbased tool that automate testing for

identifying input manipulation vulnerabilities. They

apply SQLUnitGen tool which is compared with

FindBugs, a static analysis tool. The proposed

mechanism is shown to be efficient (483 attack test

cases) as regard to the fact that false positive was

completely absent in the experiments. However for

different scenarios, false negatives at a small number

were noticed. In addition to that, it was found that

due to some shortcomings, a more significant rate of

false negatives may occur “for other applications”.

Hence, the authors talk about concentrating on

getting rid of those significant false negatives and

further improvement of the approach to cover input

manipulation vulnerabilities as their future works.

In [4] Gary McGraw explains the types of security as

Software Security with the term Application Security.

The main difference between them is that Application

Security is the process of protecting the software

after it has been completed and deployed by finding

and fixing the security problems after they have

occurred, while Software security is the process of

building a secure software by designing, planning,

coding and implementing taking in consideration

common security threats [4].

3.Sql Injection

Sql injection is a software liability that occurs when

data entered by users is sent to the sql predictor as a

part of an SQL query. There are different types of

attack that depending on the goal of attacker are

performed together.

Types of various attack

I. Tautologies:Tautology is a formula which will be

true in every situation. In such case conditional OR

operator is used such that query will always give the

result as true. In such a method, query is generated

using WHERE clause. Query will change the unique

situation into a tautology. It makes every row n the

database to open to unauthorized user access. One or

more operators are used to compare operands and

results are forever true[1]. Suppose attacker gives

input as ‘abcd’ as log in id and ‘anything’ as

password, then query generated becomes:

Select * from user_data where userid ‘abcd’ and

password=’anything’

4. Logically Incorrect Queries

Its main purpose is to identification of inject able

parameters. It is also used to extract data and to

identify database. In this method attacker tries to

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 3 May 2015

International Manuscript ID : 2249054XV5I3052015-10

gather all the data about the structure of database. If

the query sent to database is not correct, some

application server returns the error message. Attacker

uses it as advantage and injects code vulnerable

parameters. They will create syntax and type

conversion along with logical error. Type error helps

in identifying certain column data types. Table names

and column names are exposed more often by the

logical error.

This type of attacks makes use of UNION query.

Resultant will give a dataset that is return of result of

original first query and the result of query that was

injected. Basic rules used in such a query are as

follows:

• Number of columns along with their order

must be the same.

• 2Data types of columns should be same.

• First query is returned by column names.

UNION by default eliminates the duplicate rows. But

to prevent this you can use ALL keyword along with

the UNION [5].

5. Stored Procedure

These types of attacks try to run stored procedures of

the database. Stored procedures are usually in the

database to extend the functions of database. It also

gives interaction with operating system. Attacker

may use other injection techniques in the beginning

to know the type of database [6]. Once it is known

what kind of database is used in the backend then by

the use of injected code attacker may execute various

procedures. Developers write all the stored

procedures that is the reason why they don’t make

database open to injection attacks. Suppose an

attacker is injecting ‘; SHUTDOWN; -- into the user

id or password field then following code is generated

in SQL:

Select * from user_data where userid=’abcd’ and

password=’’; SHUTDOWN;--‘

This command will make the system shut down.

6.Piggy Backed Queries

It is used to modify dataset, extract data, remote

command execution, service denial. In this original

query is mixed up with additional query. First query

will be valid one and following queries are injected

ones. System might allow multiple statements in one

query. Suppose attacker writes abcd in userid and

drop table xyz—in password field. After completion

of first query, injected query is run.

7.Blind InjectionThis method asks questions

regarding true or false statements to database and

based on the response given by the application

answer is determined [7]. It is same as normal

injection. When web page doesn’t get data from

database, attacker steals data by using sequence of

true or false questions.

VI. Timing Attacks

Here database will pause for some time. After that it

returns the results. That tells user that query was

executed successfully. An attacker will enumerate

each letter using following logic:If the first is ‘A’,

waiting time is 10 seconds.If the first letter is ‘B’,

waiting time is 10 seconds etc.

CONCLUSION

In this paper various types of sql injection attacks are

discussed. To prevent these attacks it is necessary to

know about them. By knowing how they work and

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 3 May 2015

International Manuscript ID : 2249054XV5I3052015-10

operate, preventive measures can be developed for

them. They are dangerous because they can be easily

automated. Attacker can access whole database.

REFERENCES

[1] Bhavani M. Thuraisingham, Chris Clifton, Amar

Gupta, Elisa Bertino, Elena Ferrari. “Directions for

Web and E-Commerce Applications Security.”

Proceedings of the 10th IEEE International

Workshops on Enabling Technologies: Infrastructure

for Collaborative Enterprises (pp.200-204). 2001.

[2] Bojan Jovicic, Dejan Simic. “Common Web

Application Attack Types and Security Using

ASP.NET. “ ComSIS Consortium. 2006.

[3] Cosmin Striletchi, Mircea-Florin Vaida.

“Enhancing the Security of Web Applications.”

Proceedings of the 25th International Conference on

Information Technology Interfaces (pp. 463-468) .

2003.

[4] Gary McGraw. "Software Security." IEEE

Security & Privacy (vol. 2, pp. 80-83). 2004.

[5] J.D. Meier. "Web Application Security

Engineering." IEEE Security &Privacy (vol. 4, no. 4,

pp. 16–24). 2006.

[6] J.D. Meier, Alex Mackman, Michael Dunner,

Srinath Vasireddy, Ray Escamilla and Anandha

Murukan. “Improving Web Application Security:

Threats and Countermeasures.” Microsoft

Corporation. 2003.

[7] Jeff Zadeh, Dennis DeVolder. “Software

Development and Related Security Issues.”

Proceedings of IEEE Southeastcon. 2007.

[8] John R. Maguire, Gilbert Miller. “Web-

Application Security: From reactive to proactive.” IT

Professional (vol. 12, no. 4, pp. 7-9). 2010.

[9] Mark Curphey, Rudolph Araujo. “Web

application security assessment tools.” IEEE

Security & Privacy (vol. 4, no. 4, pp. 32-41). 2006.

[10] Myat Myat Min, Khin Haymar Saw Hla.

“Security on Software Life Cycle using Intrusion

Detection System.” 6th AsiaPacific Symposium on

Information and Telecommunication Technologies

APSITT 2005 Proceedings. 2005.

[11] Shin-Jer Yang, Jia-Shin Chen. “A study of

security and performance issues in designing web-

based applications.” IEEE International Conference

on e-Business Engineering. 2007.

[12] Fu, X., Lu, X., Peltsverger, B., Chen, S., Qian,

K., and Tao, L., A Static Analysis Framework for

Detecting SQL Injection Vulnerabilities. Proc. 31st

Annual International Computer Software and

Applications Conference 2007 (COMPSAC 2007),

24-27 July (2007), pp. 87-96.

