
International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 3 May 2015

International Manuscript ID : 2249054XV5I3052015-05

Approved by Council of Scientific and Industrial Research, Ministry of Science and Technology, Govt. of India

THE PRAGMATIC REVIEW ON CODE COVERAGE AND ANALYSIS

TECHNIQUES IN SOFTWARE TESTING

Savneet Kaur Virk

M.Tech. Research Scholar

Department of Computer Science and Engineering

Guru Nanak Institute of Technology

Mullana, Haryana, India

Varun Jasuja

Assistant Professor

Department of Computer Science and Engineering

Guru Nanak Institute of Technology

Mullana, Haryana, India

ABSTRACT

Source code analysis refers to the deep

investigation of source code as well as the

compiled version of code in order to help find the

flaws in terms of security, readability,

understanding and related parameters. Ideally, such

techniques automatically find the flaws with such a

high degree of confidence that what's found is

indeed a flaw. However, this is beyond the state of

the art for many types of application security flaws.

Thus, such tools frequently serve as aids for an

analyst to help them zero in on security relevant

portions of code so they can find flaws more

efficiently, rather than a tool that just automatically

finds flaws. Code Coverage is a measure used to

describe the degree to which the source code of a

program is tested by a particular test suite. A

program with high code coverage has been more

thoroughly tested and has a lower chance of

containing software bugs than a program with low

code coverage. Many different metrics can be used

to calculate code coverage; some of the most basic

are the percent of program subroutines and the

percent of program statements called during

execution of the test suite. This research work

focus on the quality of source code using code

coverage and analysis techniques. In the proposed

research work, an effective model based approach

shall be developed and implemented to improve the

performance of code in terms of overall execution

time, code complexity and related metrics.

Keywords - Code Coverage, Software Testing, Test

Case Generation, Comments Density,

INTRODUCTION

Code coverage is a way of ensuring that your tests

are actually testing your code. When we run your

tests you are presumably checking that you are

getting the expected results. Code coverage tell

how much of your code you exercised by running

the test. There are a number of criteria that can be

used to determine how well your tests exercise

your code. The most simple is statement coverage,

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 3 May 2015

International Manuscript ID : 2249054XV5I3052015-05

Approved by Council of Scientific and Industrial Research, Ministry of Science and Technology, Govt. of India

which simply tells you whether you exercised the

statements in your code. We will examine

statement coverage along with some other coverage

criteria.

When working with code coverage, and when

testing in general, it is wise to remember the

following quote from Dijkstra, who said:Testing

never proves the absence of faults, it only shows

their presence.

Code coverage is a term that is used to describe

how much application code is exercised when an

application is running. Test coverage is often used

to describe test cases that are written against the

requirements document. Both are analytics which

may be useful for quality assurance personnel to

get an indication of how thoroughly an application

has been tested.

Using code coverage is a way to try to cover more

of the testing problem space so that we come closer

to proving the absence of faults, or at least the

absence of a certain class of faults. In particular,

code coverage is just one weapon in the software

engineer's testing arsenal.

Code coverage is a white box testing methodology

that is it requires knowledge of and access to the

code itself rather than simply using the interface

provided. Code coverage is probably most useful

during the module testing phase, though it also has

benefit during integration testing and probably at

other times, depending on how and what you are

testing. Regression tests are usually black box tests

and as such may be unsuitable for use with code

coverage. But often, especially in the Perl world,

module, integration, regression and any other tests

you might perform all use the same test code, just

at different times.

CODE COVERAGE METRICS

A number of different metrics are used determine

how well exercised the code is. I'll describe some

of the most common metrics here. Most of the

metrics have slight variations and synonyms which

can make things a little more confusing than they

need to be. While I'm describing each metric I'll

also show what class of errors it can be used to

detect.

STATEMENT COVERAGE

Statement coverage is the most basic form of code

coverage. A statement is covered if it is executed.

Note that a statement does not necessarily

correspond to a line of code. Multiple statements

on a single line can confuse issues - the reporting if

nothing elsewhere there are sequences of

statements without branches it is not necessary to

count the execution of every statement, just one

will suffice, but people often like the count of

every line to be reported anyway, especially in

summary statistics.

It can be quite difficult to achieve 100% statement

coverage. There may be sections of code designed

to deal with error conditions, or rarely occurring

events such as a signal received during a certain

section of code. There may also be code that should

never be executed:

 if ($param > 20)

 {

 die "This should never happen!";

International Journal of Computing and Corporate Research

International Manuscript ID : 2249054XV5I3052015

 }

It can be useful to mark such code in some way and

flag an error if it is executed.

Statement coverage, or something very similar, can

also be called statement execution, line, block,

basic block or segment coverage.

Branch coverage

The goal of branch coverage is to ensure that

whenever a program can jump, it jumps to all

possible destinations. The most simple example is a

complete if statement:

 if ($x)

 {

 print "a";

 }

 else

 {

Table 1 - COMPARISON OF CODE COVERAGE TOOLS

Feature Atlassian Clover

Source files

Class files

Coverage metrics

Method

Statement

Line

Branch

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 3 May 2015

International Manuscript ID : 2249054XV5I3052015-05

It can be useful to mark such code in some way and

Statement coverage, or something very similar, can

atement execution, line, block,

The goal of branch coverage is to ensure that

whenever a program can jump, it jumps to all

possible destinations. The most simple example is a

 print "b";

 }

Full coverage is only achieved here only if $x is

true on one occasion and false on another.

Achieving full branch coverage will protect against

errors in which some requirements are not

certain branch. For example:

 if ($x)

 {

 $h = { a => 1 }

 }

 else

 {

 $h = 0;

 }

 print $h->{a};

COMPARISON OF CODE COVERAGE TOOLS

Cobertura JaCoCo Code Cover

 off-line

instrumentation

 off-line

and on-the-

flyinstrumentation

Full coverage is only achieved here only if $x is

true on one occasion and false on another.

Achieving full branch coverage will protect against

errors in which some requirements are not met in a

PITest

International Journal of Computing and Corporate Research

International Manuscript ID : 2249054XV5I3052015

MC/DC

Instruction

Global

coverage

Per-test

coverage

Mutation

coverage

Source code metrics

Available

metrics

20+ metrics, also

custom ones

Report types

HTML
 more details

PDF

XML

JSON

Text

CSV

Data management and report filtering

Merging of

coverage

databases

 clover2:merge

Historical

reporting

Selecting

scope of code

coverage

file patterns, class

patterns, method

pattern, code block

type, statement's

regular expression,

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 3 May 2015

International Manuscript ID : 2249054XV5I3052015-05

 explanation

 sonar JMX / sonar

cyclomatic complexity cyclomatic

complexity

 via

<jacoco:merge>

 via sonar via sonar

file patterns,

code annotations

class patterns file patterns

 lists

tests per file

package

patterns

International Journal of Computing and Corporate Research

International Manuscript ID : 2249054XV5I3052015

code complexity,

CLOVER:OFF/ON

code comments

Cross-report

linking

Supported languages

Java

Groovy

 more...

Other

Supported JDK

 1.6-1.8 (JRE/JDK)

1.3-1.8 (for "-source"

level setting)

Supported test frameworks

JUnit

TestNG

Spock

 more...

Other

 more...

IDE integrations

IntelliJ IDEA

Eclipse

NetBeans

Build tools integrations

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 3 May 2015

International Manuscript ID : 2249054XV5I3052015-05

 via <structure>

element

 instrumentation is class-based so theoretically any JVM language is supported

may lack good reporting (esp. for language-specific constructs); it may also have problems

with synthetic methods etc.

1.5-1.7 1.5-1.8 1.5-1.7

 more...

 eCobertura

is supported, but it

specific constructs); it may also have problems

1.5-1.8

International Journal of Computing and Corporate Research

International Manuscript ID : 2249054XV5I3052015

command line

Ant

Maven

Grails

Gradle

SBT

CI servers integrations

Bamboo

Hudson

Jenkins

TeamCity

Other integrations

Sonar

JIRA

Development activity

Last release actively developed,

about 7 releases / year

Technical support

 Atlassian Support, 24h

response

Subjective summary

Advantages Clover has great

and highly

configurable HTML

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 3 May 2015

International Manuscript ID : 2249054XV5I3052015-05

 code-coverage

 gradle-cobertura-

plugin

 cobertura4sbt

minor activity,

last release - 2013

actively developed,

few releases / year

minor activity,

last release -

2011

open source community open source

community

open source

community

Easy to use thanks to off-

line byte code

instrumentation. You can

Very easy to

integrate thanks to

the on-the-fly byte

It has the most

detailed code

coverage metric

minor activity, actively

developed,

few releases /

year

open source

community

as the most

coverage metric

PITest is a

tool for

mutation

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 3 May 2015

International Manuscript ID : 2249054XV5I3052015-05

Approved by Council of Scientific and Industrial Research, Ministry of Science and Technology, Govt. of India

reports(showing not

only code coverage but

also top risks etc), per-

test code coverage

and test

optimization,distributed

per-test coverageand

many tool integrations;

it is being actively

developed and

supported.

measure coverage

without having the source

code. It has very nice and

easy to navigate HTML

report (example).

code

instrumentation.

You can measure

coverage without

having the source

code. It has nice

HTML report

(example).

(MC/DC),

which may be

useful for

critical systems

(medical,

aeronautical

etc). The

Eclipse plug-in

comes also with

a cool Boolean

Expression

Analyzer view

and a Test

Correlation

matrix. It has

also an

interesting

feature to

start/stop test

case via JMX,

which can be

useful for

manual testing.

coverage,

which means

it will not

only measure

line coverage

of your code

but will also

perform

mutations in

application

logic in order

to check how

well written

your tests

are.

Disadvantages Due to a fact that

Clover is based on

source code

instrumentation,

integration requires a

build - it's necessary to

recompile code with

Clover. Most Clover's

integrations have an

automatic integration

feature, but in some

cases you may need to

add Clover JAR to a

class path or set some

Clover options.

Classes must be compiled

with debug option.

Classes must be

compiled with

debug option.

Last release has

been performed

3 years ago.

The HTML

report

generated is

quite

fragmented -

source code is

shown

separately for

every method.

Path coverage

There are classes of errors which branch coverage

cannot detect, such as:

 $h = 0;

 if ($x)

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 3 May 2015

International Manuscript ID : 2249054XV5I3052015-05

Approved by Council of Scientific and Industrial Research, Ministry of Science and Technology, Govt. of India

 {

 $h = { a => 1 };

 }

 if ($y)

 {

 print $h->{a};

 }

Condition coverage

When a boolean expression is evaluated it can be

useful to ensure that all the terms in the expression

are exercised. For example:

 a if $x || $y;

To achieve full condition coverage, this expression

should be evaluated with $x and $y set to each of

the four combinations of values they can take.

REAL TIME APPLICATIONS OF CODE

COVERAGE

• Bugs Analysis and Avoidance

• Reduction of Code Complexity

• Cross Platform Compatibility

OPEN SOURCE TOOLS - CODE ANALYSIS

• Google CodeSearchDiggity

• FindBugs

• FxCop (Microsoft)

• PMD

• PreFast (Microsoft) RATS (Fortify)

• OWASP SWAAT Project

• Flawfinder Flawfinder

• RIPS

• Brakeman

• Codesake Dawn

• VCG

COMMERCIAL TOOLS

• BugScout (Buguroo Offensive Security)

• Contrast from Contrast Security

• IBM Security AppScan Source

Edition (formerly Ounce)

• Insight (KlocWork)

• Parasoft Test (Parasoft)

• Pitbull Source Code Control (Pitbull SCC)

• Seeker (Quotium)

• Source Patrol (Pentest)

• Static Source Code Analysis with

CodeSecure™ (Armorize Technologies)

• Kiuwan - SaaS Software Quality & Security

Analysis (Optimyth)

• Static Code Analysis (Checkmarx)

• Security Advisor (Coverity)

• Source Code Analysis (HP/Fortify)

• Veracode (Veracode)

• Sentinel Source solution (Whitehat)

REVIEW OF LITERATURE

To propose and defend the research work, a

number of research papers are analyzed. Following

are the excerpts from the different research work

performed by number of academicians and

researchers.

[1] In this paper, the authors provide the details of

an efficient method to compute an observability-

based code coverage metric that can be used while

simulating complex hardware description language

(HDL) designs. This method offers a more accurate

assessment of design verification coverage than

line coverage and is significantly more

computationally efficient than prior efforts to

assess observability information because it breaks

up the computation into two phases: functional

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 3 May 2015

International Manuscript ID : 2249054XV5I3052015-05

Approved by Council of Scientific and Industrial Research, Ministry of Science and Technology, Govt. of India

simulation of a modified HDL model followed by

analysis of a flow graph extracted from the HDL

model.

[2] Penetration testing is the most commonly

applied mechanism used to gauge software

security, but it’s also the most commonly

misapplied mechanism as well. By applying

penetration testing at the unit and system level,

driving test creation from risk analysis, and

incorporating the results back into an

organization’s SDLC, an organization can avoid

many common pitfalls. As a measurement tool,

penetration testing is most powerful when fully

integrated into the development process in such a

way that finding scan help improve design,

implementation, and deployment practices

[3] In this paper the authors present a new approach

to dynamically insert and remove instrumentation

code to reduce the runtime overhead of code

coverage. The work also explores the use of

dominator tree information to reduce the number of

instrumentation points needed. Our experiments

show that the approach reduces runtime overhead

by 38-90% compared with purecov, a commercial

code coverage tool.

[4] This paper presents a technique intended to

solve this Problem, using both time & code

coverage measures for the prediction of software

failures in operation. Coverage information

collected during testing is used only to consider the

effective portion of the test data. Execution time

between test cases, which neither increases code

coverage nor causes a failure, is reduced by a

parameterized factor. Experiments the work

reconducted to evaluate this technique, on a

program created in a simulated environment with

simulated faults, and on two industrial systems that

contained tenths of ordinary faults.

[5] This work focuses on assorted code inspection

techniques with multiple case generations. Using

this work, the major work is done of penetration

testing and its association with the software

complexity issues.

[6] In this paper, the authors describe our algorithm

for mapping CVS comments to the corresponding

source code, present a search tool based on this

technique, and discuss preliminary feedback.

[7] This paper describes in a general way the

process we went through to determine the goals,

principles, audience, content and style for writing

comments in source code for the Java platform at

the Java Software division of Sun Microsystems.

This includes how the documentation comments

evolved to become the home of the Java platform

API specification, and the guidelines we developed

to make it practical for this document to reside in

the same files as the source code.

[8] A code clone is a code portion in source files

that is identical or similar to another. Since code

clones are believed to reduce the maintainability of

software, several code clone detection techniques

and tools have been proposed. This paper proposes

a new clone detection technique, which consists of

the transformation of input source text and a token-

by-token comparison. For its implementation with

several useful optimization techniques, we have

developed a tool, named CCFinder (Code Clone

Finder), which extracts code clones in C, C++,

Java, COBOL and other source files. In addition,

metrics for the code clones have been developed. In

order to evaluate the usefulness of CCFinder and

metrics, we conducted several case studies where

we applied the new tool to the source code of JDK,

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 3 May 2015

International Manuscript ID : 2249054XV5I3052015-05

Approved by Council of Scientific and Industrial Research, Ministry of Science and Technology, Govt. of India

FreeBSD, NetBSD, Linux, and many other

systems. As a result, CCFinder has effectively

found clones and the metrics have been able to

effectively identify the characteristics of the

systems. In addition, we have compared the

proposed technique with other clone detection

techniques.

[9] Comments are valuable especially for program

understanding and maintenance, but do developers

comment their code? To which extent do they add

comments or adapt them when they evolve the

code? We examine the question whether source

code and associated comments are really changed

together along the evolutionary history of a

software system. In this paper, we describe an

approach to map code and comments to observe

their co-evolution over multiple versions. We

investigated three open source systems (i.e.,

ArgoUML, Azureus, and JDT core) and describe

how comments and code co-evolved over time.

Some of our findings show that: 1) newly added

code - despite its growth rate - barely gets

commented; 2) class and method declarations are

commented most frequently but far less, for

example, method calls; and 3) that 97% of

comment changes are done in the same revision as

the associated source code change.

[10] It is common, especially in large software

systems, for developers to change code without

updating its associated comments due to their

unfamiliarity with the code or due to time

constraints. This is a potential problem since

outdated comments may confuse or mislead

developers who perform future development. Using

data recovered from CVS, we study the evolution

of code comments in the PostgreSQL project. Our

study reveals that over time the percentage of

commented functions remains constant except for

early fluctuation due to the commenting style of a

particular active developer.

[11] An important software engineering artefact

used by developers and maintainers to assist in

software comprehension and maintenance is source

code documentation. It provides insights that help

software engineers to effectively perform their

tasks, and therefore ensuring the quality of the

documentation is extremely important. Inline

documentation is at the forefront of explaining a

programmer’s original intentions for a given

implementation. Since this documentation is

written in natural language, ensuring its quality

needs to be performed manually. In this paper, we

present an effective and automated approach for

assessing the quality of inline documentation using

a set of heuristics, targeting both quality of

language and consistency between source code and

its comments. We apply our tool to the different

modules of two open source applications

(ArgoUML and Eclipse), and correlate the results

returned by the analysis with bug defects reported

for the individual modules in order to determine

connections between documentation and code

quality.

PROPOSED WORK

As the domain of software testing is much

diversified, there is lots of scope of research for the

scholars and practitioners. In Code Based Software

Testing, the following research areas can be

worked out by the research scholars -

• Component Based Code Investigation

• Security and Privacy Issues in Code

Modules

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 3 May 2015

International Manuscript ID : 2249054XV5I3052015-05

Approved by Council of Scientific and Industrial Research, Ministry of Science and Technology, Govt. of India

• Cross Platform Compatibility and

Efficiency Issues

• Functional Aspects and Scenarios

• Analysis of Comments Density

• Analysis of Operands and relative

performance on overall code

• Halstead Metrics Analysis

To improve the base work done in the existing

algorithm having the classical approach with

haphazard manner of operands and comments, we

will calculate the execution time and complexity of

the existing algorithm in the base paper. At the end,

the whole research work will be concluded with

some future research work. To design an effective

and improved model for code coverage including

comments density analysis, variables and operands

used. To design and implement the effective model

for code investigation using Monte Carlo

Simulation Techniques, the proposed work will

deliver the optimized rules and solutions so that the

proportional aspects of operands, constants and

comments can be used in the source code.

Comparison shall be done on multiple parameters

in Existing and Proposed Approach.

CONCLUSION AND SCOPE OF FUTURE

WORK

Source code analysis is the automated testing

of source code for the purpose of debugging a

computer program or application before it is

distributed or sold. Source code consists of

statements created with a text editor or visual

programming tool and then saved in a file. The

source code is the most permanent form of a

program, even though the program may later be

modified, improved or upgraded. Code coverage

analysis is used to measure the quality of software

testing, usually using dynamic execution flow

analysis. There are many different types of code

coverage analysis, some very basic and others that

are very rigorous and complicated to perform

without advanced tool support. The proposed work

shall be implemented on a simulation based

scenario for proportional comments, operands and

related aspects of the source code.

REFERENCES

[1] Fallah, Farzan, Srinivas Devadas, and Kurt

Keutzer. "OCCOM-efficient computation of

observability-based code coverage metrics for

functional verification." Computer-Aided Design of

Integrated Circuits and Systems, IEEE

Transactions on 20, no. 8 (2001): 1003-1015.

[2] Burr, Kevin, and William Young.

"Combinatorial test techniques: Table-based

automation, test generation and code coverage." In

Proc. of the Intl. Conf. on Software Testing

Analysis & Review. 1998.

[3] Tikir, Mustafa M., and Jeffrey K.

Hollingsworth. "Efficient instrumentation for code

coverage testing." ACM SIGSOFT Software

Engineering Notes 27, no. 4 (2002): 86-96.

[4] Chen, M. H., Lyu, M. R., & Wong, W. E.

(2001). Effect of code coverage on software

reliability measurement. Reliability, IEEE

Transactions on, 50(2), 165-170.

[5] Fagan, M. (2002). Design and code inspections

to reduce errors in program development. In

Software pioneers (pp. 575-607). Springer Berlin

Heidelberg.

[6] Kramer, D. (1999, October). API

documentation from source code comments: a case

study of Javadoc. In Proceedings of the 17th annual

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 3 May 2015

International Manuscript ID : 2249054XV5I3052015-05

Approved by Council of Scientific and Industrial Research, Ministry of Science and Technology, Govt. of India

international conference on Computer

documentation (pp. 147-153). ACM.

[7] Yao, A. Y. (2001, November). CVSSearch:

Searching through source code using CVS

comments. In Proceedings of the IEEE

International Conference on Software Maintenance

(ICSM'01) (p. 364). IEEE Computer Society.

[8] Fluri, B., Wursch, M., & Gall, H. C. (2007,

October). Do code and comments co-evolve? on

the relation between source code and comment

changes. In Reverse Engineering, 2007. WCRE

2007. 14th Working Conference on (pp. 70-79).

IEEE.

[9] Fluri, B., Wursch, M., & Gall, H. C. (2007,

October). Do code and comments co-evolve? on

the relation between source code and comment

changes. In Reverse Engineering, 2007. WCRE

2007. 14th Working Conference on (pp. 70-79).

IEEE.

[10] Jiang, Z. M., & Hassan, A. E. (2006, May).

Examining the evolution of code comments in

PostgreSQL. In Proceedings of the 2006

international workshop on Mining software

repositories (pp. 179-180). ACM.

[11] Khamis, N., Witte, R., & Rilling, J. (2010).

Automatic quality assessment of source code

comments: the JavadocMiner. In Natural language

processing and information systems (pp. 68-79).

Springer Berlin Heidelberg.

[12] Kilgour, R. I., Gray, A. R., Sallis, P. J., &

MacDonell, S. G. (1998). A fuzzy logic approach

to computer software source code authorship

analysis.

[13] Nagappan, N., & Ball, T. (2005, May). Static

analysis tools as early indicators of pre-release

defect density. In Proceedings of the 27th

international conference on Software engineering

(pp. 580-586). ACM.

[14] Kilgour, R. I., Gray, A. R., Sallis, P. J., &

MacDonell, S. G. (1998). A fuzzy logic approach

to computer software source code authorship

analysis.

[15] Gabel, M., & Su, Z. (2010, November). A

study of the uniqueness of source code. In

Proceedings of the eighteenth ACM SIGSOFT

international symposium on Foundations of

software engineering (pp. 147-156). ACM.

[16] Frantzeskou, G., MacDonell, S., Stamatatos,

E., & Gritzalis, S. (2008). Examining the

significance of high-level programming features in

source code author classification. Journal of

Systems and Software, 81(3), 447-460.

