
International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 6 November 2015

International Manuscript ID : 2249054XV5I6112015-02

RELIABLE AND EFFICIENT TASK SCHEDULING

ALGORITHM BASED ON GENETIC ALGORITHM IN

CLOUD COMPUTING ENVIRONMENT

Marish Kumar

Research Scholar

Department of Computer Science and Engineering

National Institute of Technical Teachers Training & Research

Chandigarh, India

Amit Doegar

Assistant Professor

Department of Computer Science and Engineering

National Institute of Technical Teachers Training & Research

Chandigarh, India

ABSTRACT

This research task is focused on the developed and implementation of a unique and effective

approach in the cloud infrastructure for the higher throughput and less cost in the job

scheduling. The proposed algorithm is implemented and integrated using genetic algorithm

for optimization of the results including the cost and performance factor. The system is

generating efficient results in terms of the optimal solution when executed using genetic

algorithm. In this approach, the technique is efficient also in terms of the execution and

turnaround time despite of the number of iterations. The limitations may be included

regarding the proposed work in terms of its further enhancement using assorted

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 6 November 2015

International Manuscript ID : 2249054XV5I6112015-02

metaheuristics. The proposed system gives better results in executed using genetic algorithm

that is one of the prominent metaheuristic techniques.

Keywords – Multiprocessor Job Scheduling, Scheduling in Cloud, Cloud Computing

INTRODUCTION

Real-time multiprocessor systems are now commonplace. Designs range from single-chip

architectures, with a modest number of processors, to large-scale signal-processing systems,

such as synthetic-aperture radar systems. For uniprocessor systems, the problem of ensuring

that deadline constraints are met has been widely studied: effective scheduling algorithms

that take into account the many complexities that arise in real systems (e.g., synchronization

costs, system overheads, etc.) are well understood. In contrast, researchers are just beginning

to understand the trade-offs that exist in multiprocessor systems.

Traditionally, there have been two approaches for scheduling periodic task systems on

multiprocessors: partitioning and global scheduling. In global scheduling, all eligible tasks

are stored in a single priority-ordered queue; the global scheduler selects for execution the

highest priority tasks from this queue. Unfortunately, using this approach with optimal

uniprocessor scheduling algorithms, such as the rate-monotonic (RM) and earliest-deadline-

first (EDF) algorithms may result in arbitrarily low processor utilization in multiprocessor

systems . However, recent research on proportionate fair (Pfair) scheduling has shown

considerable promise in that it has produced the only known optimal method for scheduling

periodic tasks on multiprocessors.

In partitioning, each task is assigned to a single processor, on which each of its jobs will

execute, and processors are scheduled independently. The main advantage of partitioning

approaches is that they reduce a multiprocessor scheduling problem to a set of uniprocessor

ones. Unfortunately, partitioning has two negative consequences. First, finding an optimal

assignment of tasks to processors is a bin-packing problem, which is NP-hard in the strong

sense. Thus, tasks are usually partitioned using non-optimal heuristics. Second, as shown

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 6 November 2015

International Manuscript ID : 2249054XV5I6112015-02

later, task systems exist that are schedulable if and only if tasks are not partitioned. Still,

partitioning approaches are widely used by system designers.

In addition to the above approaches, we consider a new “middle” approach in which each job

is assigned to a single processor, while a task is allowed to migrate. In other words, inter-

processor task migration is permitted only at job boundaries. We believe that migration is

eschewed in the design of multiprocessor real-time systems because its true cost in terms of

the final system produced is not well understood. As a step towards understanding this cost,

we present a new taxonomy that ranks scheduling schemes along the following two

dimensions:

P fair scheduling - In recent years, much research has been done on global multiprocessor

scheduling algorithms that ensure fairness. Proportionate-fair (Pfair) scheduling, proposed by

Baruah et al. , is presently the only known optimal method for scheduling recurrent real-time

tasks on a multiprocessor system. Under Pfair scheduling, each task is assigned a weight that

specifies the rate at which that task should execute: a task with weight w would ideally

receive w · L units of processor time over any interval of length L. Under Pfair scheduling,

tasks are scheduled according to a fixed-size allocation quantum so that deviation from an

ideal allocation is strictly bounded.Currently, three optimal Pfair scheduling algorithms are

known: PF , PF, and PD2 . Of these algorithms, PD2 is the most recently developed and the

most efficient.

The primary advantage of Pfair scheduling over partitioning is the ability to schedule any

feasible periodic, sporadic, or rate-based task system
3

. Hence, Pfair scheduling algorithms can

seamlessly handle dynamic events, such as tasks leaving and joining a system. Furthermore,

fair multiprocessor scheduling algorithms are becoming more popular due to the proliferation

of web and multimedia applications. For instance, Ensim Corp., an Internet service provider,

has deployed fair multiprocessor scheduling algorithms in its product line.

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 6 November 2015

International Manuscript ID : 2249054XV5I6112015-02

The main disadvantage of Pfair scheduling is degraded processor affinity. Processor affinity

refers to the tendency of tasks to execute faster when repeatedly scheduled on the same

processor. This tendency is usually the result of per-processor first-level caching.

Preemptions and migrations, both of which tend to occur frequently under Pfair scheduling,

limit the effectiveness of these first-level caches and can lead to increased execution times

due to cache misses. On the other hand, under partitioning with EDF, there is no migration

and the number of preemptions on a processor is bounded by the number of jobs on that

processor (assuming independent tasks).

Layer-Based Scheduling Algorithms - There has been a lot of research regarding scheduling

algorithms for independent M-Tasks. However, these scheduling algorithms cannot cope with

precedence constraints between M-Tasks. This limitation can be avoided using layer-based

scheduling algorithms3 for MTasks with precedence constraints. These algorithms utilize a

shrinking phase and a layering phase to decompose an M-Task dag into sets of independent

M-Tasks, called layers. The subsequent layer scheduling phase computes a schedule for each

layer in isolation. Our extension strategy enables the combination of the shrinking phase, the

layering phase and the assembling phase with a scheduling algorithm for independent M-

Tasks in the layer scheduling phase. Therefore, any scheduling algorithm for independent M-

Tasks can be extended to support M-Task dags.

Layer Scheduling Algorithms - In this phase an M-Task schedule is computed for each

constructed layer VLi , i = 1, . . . , l in isolation. In the following we omit the index i and use

VL for the layer to be scheduled.

Two L-Level determines the total execution time for each possible partitioning of the set of

available processors into Κ, Κ = 1, . . . , min(P, |VL|) subgroups ˆg Κ,1, . . . ˆgk,k of about

equal size
3
. The schedule for each of these partitionings is computed by adopting a list

scheduling heuristic. In each step of this heuristic the M-Task v € VL is assigned to group ˆg*

€{ˆg Κ,1, . . . ˆg Κ, Κ }, where ˆg Κ is the first subgroup becoming available and v is the M-Task

with the largest execution time. The final processor groups g1, . . . , g Κ* are computed by a

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 6 November 2015

International Manuscript ID : 2249054XV5I6112015-02

subsequent group adjustment step from the groups ˆg Κ*,1, . . . , ˆgk*,k* , where Κ* denotes the

partitioning resulting in a minimum runtime.

Two L-Tree starts by constructing a tree for each M-Task v € VL consisting of a single

node8. A dynamic programming approach is used to find all unordered pairs of trees {t1, t2}

with an equal depth and disjoint sets of M-Tasks. For each pair {t1, t2} a new tree t with a

new root node and children t1 and t2 is created. Each tree represents a schedule of the

contained M-Tasks. The inner nodes of the trees are annotated with a cost table containing

the execution time of the whole subtree for all possible processor group sizes g
s
 = 1, . . . , P.

A second annotation defines whether the schedules represented by the children of the node

should be executed one after other or in parallel on disjoint processor groups. Finally, a set

of trees each containing all nodes of the current layer is constructed, where each such tree

symbolizes a different schedule. The output schedule of the algorithm is constructed from the

tree which admits the minimum execution time.

LLREF Scheduling Algorithm Model - We consider global scheduling, where task migration

is not restricted, on an SMP system with M identical processors. We consider the application

to consist of a set of tasks, denoted T = {T1, T2, ..., TN}. Tasks are assumed to arrive

periodically at their release times ri. Each task Ti has an execution time ci, and a relative

deadline di which is the same as its period pi. The utilization ui of a task Ti is defined as ci/di

and is assumed to be less than 1. We assume that tasks may be preempted at any time, and are

independent, i.e., they do not share resources or have any precedences.

GENETIC ALGORITHM

Genetic algorithms (GAs) are search methods based on principles of natural selection and

genetics (Fraser, 1957; Bremermann, 1958; Holland, 1975). We start with a brief introduction

to simple genetic algorithms and associated terminology.

GAs encode the decision variables of a search problem into finite-length strings of alphabets

of certain cardinality. The strings which are candidate solutions to the search problem are

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 6 November 2015

International Manuscript ID : 2249054XV5I6112015-02

referred to as chromosomes, the alphabets are referred to as genes and the values of genes are

called alleles. For example, in a problem such as the traveling salesman problem, a

chromosome represents a route, and a gene may represent a city. In contrast to traditional

optimization techniques, GAs work with coding of parameters, rather than the parameters

themselves.

To evolve good solutions and to implement natural selection, we need a measure for

distinguishing good solutions from bad solutions. The measure could be an objective function

that is a mathematical model or a computer simulation, or it can be a subjective function

where humans choose better solutions over worse ones. In essence, the fitness measure must

determine a candidate solution’s relative fitness, which will subsequently be used by the GA

to guide the evolution of good solutions.

Another important concept of GAs is the notion of population. Unlike traditional search

methods, genetic algorithms rely on a population of candidate solutions. The population size,

which is usually a user-specified parameter, is one of the important factors affecting the

scalability and performance of genetic algorithms. For example, small population sizes might

lead to premature convergence and yield substandard solutions. On the other hand, large

population sizes lead to unnecessary expenditure of valuable computational time. Once the

problem is encoded in a chromosomal manner and a fitness measure for discriminating good

solutions from bad ones has been chosen, we can start to evolve solutions to the search

problem using the following steps:

Initialization. The initial population of candidate solutions is usually generated randomly

across the search space. However, domain-specific knowledge or other information can be

easily incorporated.

Evaluation. Once the population is initialized or an offspring population is created, the

fitness values of the candidate solutions are evaluated.

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 6 November 2015

International Manuscript ID : 2249054XV5I6112015-02

Selection. Selection allocates more copies of those solutions with higher fitness values and

thus imposes the survival-of-the-fittest mechanism on the candidate solutions. The main idea

of selection is to prefer better solutions to worse ones, and many selection procedures have

been proposed to accomplish this idea, including roulette-wheel selection, stochastic

universal selection, ranking selection and tournament selection, some of which are described

in the next section.

Recombination. Recombination combines parts of two or more parental solutions to create

new, possibly better solutions (i.e. offspring). There are many ways of accomplishing this

(some of which are discussed in the next section), and competent performance depends on a

properly designed recombination mechanism. The offspring under recombination will not be

identical to any particular parent and will instead combine parental traits in a novel manner

(Goldberg, 2002).

Mutation. While recombination operates on two or more parental chromosomes, mutation

locally but randomly modifies a solution. Again, there are many variations of mutation, but it

usually involves one or more changes being made to an individual’s trait or traits. In other

words, mutation performs a random walk in the vicinity of a candidate solution.

Replacement. The offspring population created by selection, recombination, and mutation

replaces the original parental population. Many replacement techniques such as elitist

replacement, generation-wise replacement and steady-state replacement methods are used in

GAs.

Goldberg (1983, 1999a, 2002) has likened GAs to mechanistic versions of certain modes of

human innovation and has shown that these operators when analyzed individually are

ineffective, but when combined together they can work well. This aspect has been explained

with the concepts of the fundamental intuition and innovation intuition. The same study

compares a combination of selection and mutation to continual improvement (a form of hill

climbing), and the combination of selection and recombination to innovation

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 6 November 2015

International Manuscript ID : 2249054XV5I6112015-02

(crossfertilizing). These analogies have been used to develop a design-decomposition

methodology and so-called competent GAs—that solve hard problems quickly, reliably, and

accurately—both of which are discussed in the subsequent sections.

KEY POINTS OF THE SYSTEM

• The proposed system is generating efficient results in terms of the optimal solution

when executed using genetic algorithm.

• The proposed technique is efficient also in terms of the execution and turnaround time

despite of the number of iterations

• The limitations may be included regarding the proposed work in terms of its further

enhancement using assorted metaheuristics.

• The proposed system may give better results in executed using simulated annealing

that is one of the prominent metaheuristic technique.

PLATFROM SETUP FOR THE IMPLEMENTATION

• JDK

• Eclipse IDE

• CloudSim

• GridSim

• JUnit

• JCharts

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 6 November 2015

International Manuscript ID : 2249054XV5I6112015-02

Fig. 1 – Allocation of Tasks to VM and related aspects

IMPLEMENTATION, RESULTS AND DISCUSSION

P1 P2 P3 PN

Analyze the Priority, Deadline and Remaining Time of the

Initialize and Activate the VM and Data Centers for Allocation

and Measurement

Parallel Scheduler

Allocate the Jobs to VM and Data

Centers in Parallel with the

priorities -> Shortest Time,

Deadline

Analyze Parameters

Waiting

Time

Turnaroun

d Time

Performanc

e

Efficiency

Cost Factor

Complexity

Cumulative Report and Final Results

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 6 November 2015

International Manuscript ID : 2249054XV5I6112015-02

The implementation is done in Eclipse IDE with Cloud and Grid Simulators in the External

JAR Libraries for compatibility with Cloud and Grid Infrastructure. It is found and concluded

from the results that EDSRTF algorithm is having effective results in cumulative way if we

consider all the parameters in investigation as a whole level.

• The existing and base multiprocessor scheduling approaches are having huge

pitfalls more execution time

• The basic solution obtained without swarm intelligence is not efficient in terms of

the turnaround time and optimal results

• To investigate the drawbacks and shortcomings in the classical multiprocessor

scheduling

• To propose and implement a novel technique for the simulation of genetic

algorithm based multiprocessor scheduling

PROPOSED ALGORITHM

1. To design the matrices and blocks of the computation cost as well as communication.

2. Assignment of priorities to tasks.

3. Calculate EST=0 & EFT=0 of task 1 on each processor, set process avail time for

p1,p2,p3=0. Assign processor to task1 on which EFT is minimum

either p1=EFT (T1or task1) or p2=EFT (T1) or P3=EFT(T1)

4. Activation of the Genetic Algorithm and its aspects

a. for t2 to tn repeat above

5. Calculate if (parent of t1 executed on p1)

6. EST (tn) on p1=max (parent executed)

a. p2=max (parent completion+Communication cost), processor avail time)

7. EST (tn) on p3= same as above

8. EFT=EST+Computation cost

9. Effective Comparison between the classical approach and proposed Approach

RESEARCH METHODOLOGY

• Collection of the Training Data Set for Analysis

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 6 November 2015

International Manuscript ID : 2249054XV5I6112015-02

• Implementation of the Computation Cost Matrix

• Applying Genetic Algorithm on the Multiprocessor Scheduling

• Applying the proposed model on the Training data set

• Fetch Results

• Data Interpretation

In the complete implementation and research task, following aspects and reference is used

regarding classical and proposed approach

Classical / Existing Approach -

GAMP (Greedy Approach Based Multiprocessor Scheduling)

Proposed Approach -

GAMBS (Genetic Algorithm Metaheuristic Based Scheduling)

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 6 November 2015

International Manuscript ID : 2249054XV5I6112015-02

Fig. 2 – Simulation Scenario

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 6 November 2015

International Manuscript ID : 2249054XV5I6112015-02

Fig. 3 – Simulation Completion Status

0

1

2

3

4

5

6

1 2 3 4 5

E

x

e

c

u

t

i

o

n

T

i

m

e

(

m

s)

Simulation Attempt

Simulation Attempt

Classical Work

Proposed Work

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 6 November 2015

International Manuscript ID : 2249054XV5I6112015-02

Figure 4 - Line Graph Analysis of the Classical and Proposed Approach

International Jo

Internatio

Figure 5 – Bar Graph Analysis of the Classical and Proposed Approach

Simulation Attempt

1

2

3

4

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2

T

i

m

e

(

m

s)

Simulation Run Attempt

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 6 November 2015

International Manuscript ID : 2249054XV5I6112015-02

Bar Graph Analysis of the Classical and Proposed Approach

Simulation Attempt Classical Work Proposed Work

89 70

78 60

67 59

76 40

49 20

3 4 5

Simulation Run Attempt

Classical Work

Proposed Work

Bar Graph Analysis of the Classical and Proposed Approach

Proposed Work

Classical Work

Proposed Work

International Jo

Internatio

Figure 6 – Cost Factor Graph Analysis of the Classical and Proposed Approach

Classical / Existing Approach is not having effectiveness and efficiency as compared to

GA based approach. The classical work is take

integration of metaheuristic based simulation.

with the integration of GA to evaluate the efficiency and related cost factor.

Figure 7 – Cost Factor Line Graph Analysis of the Approaches

It is evident from the graphical results that the cost factor in the proposed approach is

0

10

20

30

40

50

60

70

80

90

1

C

o

s

t

F

a

c

t

o

r

0

10

20

30

40

50

60

70

80

90

100

1

C

o

s

t

F

a

c

t

o

r

Simulation Run Attempt

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 6 November 2015

International Manuscript ID : 2249054XV5I6112015-02

Cost Factor Graph Analysis of the Classical and Proposed Approach

Classical / Existing Approach is not having effectiveness and efficiency as compared to

GA based approach. The classical work is taken as the implementation without

integration of metaheuristic based simulation. Tasks executed without GA and then

with the integration of GA to evaluate the efficiency and related cost factor.

Cost Factor Line Graph Analysis of the Approaches

It is evident from the graphical results that the cost factor in the proposed approach is

2 3 4 5

Simulation Run Attempt

Classical Work

Proposed Work

1 2 3 4 5

Simulation Run Attempt

Classical Work

Proposed Work

Cost Factor Graph Analysis of the Classical and Proposed Approach

Classical / Existing Approach is not having effectiveness and efficiency as compared to

n as the implementation without

Tasks executed without GA and then

with the integration of GA to evaluate the efficiency and related cost factor.

Cost Factor Line Graph Analysis of the Approaches

It is evident from the graphical results that the cost factor in the proposed approach is

Classical Work

Proposed Work

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 6 November 2015

International Manuscript ID : 2249054XV5I6112015-02

very less as compared to the classical approach. The execution time in the classical

work is taking higher units as compared to the proposed work.

Tasks executed without GA and then with the integration of GA to evaluate the

efficiency and related cost factor.

Table 1 - Tabular Comparison of the Results Obtained

 W T E P C CF

FCFS 10 50 75 85 690 35

LJF 14 550 20 40 20 300

EDSRTF 8 20 70 87 680 20

GA 7 18 95 96 670 18

It is evident from the simulation results and Table 1 that the cumulative result based on all the

parameters are effective and better in the proposed approach name GA.

W – Waiting Time

The amount of time a process has been waiting in the ready queue in the process of

execution.

T – Turnaround Time

Amount of time taken to complete a particular process.

E – Efficiency

The number of process that completes its execution per time unit.

P – Performance

Performance (P) is directly associated with the degree of Efficiency (e)

C – Complexity

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 6 November 2015

International Manuscript ID : 2249054XV5I6112015-02

Complexity of a structured program is defined with reference to the control flow graph of the

program, a directed graph containing the basic blocks of the program, with an edge between

two basic blocks if control may pass from the first to the second.

The complexity C is then defined as

C = E − N + 2P,

where

E = the number of edges of the graph.

N = the number of nodes of the graph.

P = the number of connected components.

n alternative formulation is to use a graph in which each exit point is connected back to the

entry point. In this case, the graph is strongly connected, and the cyclomatic complexity of

the program is equal to the cyclomatic number of its graph (also known as the first Betti

number), which is defined as

C = E − N + P.

This may be seen as calculating the number of linearly independent cycles that exist in the

graph, i.e. those cycles that do not contain other cycles within themselves. Note that because

each exit point loops back to the entry point, there is at least one such cycle for each exit

point.

CF – Cost Factor

r => n * (1/t) * rnd

n -> Length of the Input

t -> Execution Time

rnd -> Random Fuzzy Random

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 6 November 2015

International Manuscript ID : 2249054XV5I6112015-02

c = 1/(r * (p + e)) * 100

Fig. 8 – Cumulative Analysis of the Paramters

CONCLUSION AND FUTURE WORK

Because of the advances in the technology, the issues and further scope in science and

engineering are becoming more complicated than ever before. To solve these complicated

problems, grid computing becomes a popular tool. A grid environment collects, integrates,

and uses heterogeneous or homogeneous resources scattered around the globe by a high-

speed network. A grid environment can be classified into tw types: computing grids and data

grids. This research work focuses on job scheduling algorithms and their performance on

multiple parameters in the grid environment. In computing grid, job scheduling is a very

important task. A good scheduling algorithm can assign jobs to resources efficiently and can

balance the system load.

For future scope of the work, following techniques can be used in hybrid approach to better

and efficient results –

0

100

200

300

400

500

600

700

800

FCFS

LJF

Genetic Algorithm

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 6 November 2015

International Manuscript ID : 2249054XV5I6112015-02

• Particle Swarm Optimization

• HoneyBee Algorithm

• Simulated Annealing

• Genetic Algorithmic Approaches

REFERENCES

[1] Joseph, J., Ernest, M., & Fellenstein, C. (2004). Evolution of grid computing

architecture and grid adoption models. IBM Systems Journal, 43(4), 624-645.

[2] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., ... & Warfield, A.

(2003). Xen and the art of virtualization. ACM SIGOPS Operating Systems Review,

37(5), 164-177.

[3] Al-Fares, M., Loukissas, A., & Vahdat, A. (2008). A scalable, commodity data center

network architecture. ACM SIGCOMM Computer Communication Review, 38(4),

63-74.

[4] Robinson, J., Sinton, S., & Rahmat-Samii, Y. (2002). Particle swarm, genetic

algorithm, and their hybrids: optimization of a profiled corrugated horn antenna. In

Antennas and Propagation Society International Symposium, 2002. IEEE (Vol. 1, pp.

314-317). IEEE.

[5] Kune, R., Konugurthi, P. K., Agarwal, A., Chillarige, R. R., & Buyya, R. (2014,

December). Genetic Algorithm based Data-aware Group Scheduling for Big Data

Clouds. In Proceedings of the 2014 IEEE/ACM International Symposium on Big Data

Computing (pp. 96-104). IEEE Computer Society.

[6] Sailer, R., Valdez, E., Jaeger, T., Perez, R., Van Doorn, L., Griffin, J. L., ... & Berger,

G. S. (2005). sHype: Secure hypervisor approach to trusted virtualized systems.

Techn. Rep. RC23511.

[7] Mathew, T., Sekaran, K. C., & Jose, J. (2014, September). Study and analysis of

various task scheduling algorithms in the cloud computing environment. In Advances

in Computing, Communications and Informatics (ICACCI, 2014 International

Conference on (pp. 658-664). IEEE.

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 6 November 2015

International Manuscript ID : 2249054XV5I6112015-02

[8] Singh, S., & Kalra, M. (2014, November). Scheduling of Independent Tasks in Cloud

Computing Using Modified Genetic Algorithm. In Computational Intelligence and

Communication Networks (CICN), 2014 International Conference on (pp. 565-569).

IEEE.

[9] Verma, A., & Kaushal, S. (2014). Deadline constraint heuristic-based genetic

algorithm for workflow scheduling in cloud. International Journal of Grid and Utility

Computing, 5(2), 96-106.

[10] Javanmardi, S., Shojafar, M., Amendola, D., Cordeschi, N., Liu, H., &

Abraham, A. (2014, January). Hybrid job scheduling algorithm for cloud computing

environment. In Proceedings of the Fifth International Conference on Innovations in

Bio-Inspired Computing and Applications IBICA 2014 (pp. 43-52). Springer

International Publishing.

[11] Rodriguez, M. A., & Buyya, R. (2014). Deadline based resource

provisioningand scheduling algorithm for scientific workflows on clouds.Cloud

Computing, IEEE Transactions on, 2(2), 222-235.

[12] Singh, L., & Singh, S. (2014). A Genetic Algorithm for Scheduling Workflow

Applications in Unreliable Cloud Environment. In Recent Trends in Computer

Networks and Distributed Systems Security (pp. 139-150). Springer Berlin

Heidelberg.

[13] Shojafar, M., Javanmardi, S., Abolfazli, S., & Cordeschi, N. (2015). FUGE: A

joint meta-heuristic approach to cloud job scheduling algorithm using fuzzy theory

and a genetic method. Cluster Computing, 18(2), 829-844.

[14] Gu, J., Hu, J., Zhao, T., & Sun, G. (2012). A new resource scheduling strategy

based on genetic algorithm in cloud computing environment. Journal of

Computers, 7(1), 42-52.

[15] Pandey, S., Wu, L., Guru, S. M., & Buyya, R. (2010, April). A particle swarm

optimization-based heuristic for scheduling workflow applications in cloud computing

environments. In Advanced Information Networking and Applications (AINA), 2010

24th IEEE International Conference on (pp. 400-407). IEEE.

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 6 November 2015

International Manuscript ID : 2249054XV5I6112015-02

[16] Kune, R., Konugurthi, P. K., Agarwal, A., Chillarige, R. R., & Buyya, R.

(2014, December). Genetic Algorithm based Data-aware Group Scheduling for Big

Data Clouds. In Proceedings of the 2014 IEEE/ACM International Symposium on Big

Data Computing (pp. 96-104). IEEE Computer Society.

[17] Verma, A., & Kaushal, S. (2014). Deadline constraint heuristic-based genetic

algorithm for workflow scheduling in cloud. International Journal of Grid and Utility

Computing, 5(2), 96-106.

[18] Javanmardi, S., Shojafar, M., Amendola, D., Cordeschi, N., Liu, H., &

Abraham, A. (2014, January). Hybrid job scheduling algorithm for cloud computing

environment. In Proceedings of the Fifth International Conference on Innovations in

Bio-Inspired Computing and Applications IBICA 2014 (pp. 43-52). Springer

International Publishing.

[19] Ye, H. (2015). Research on Emergency Resource Scheduling in Smart City

based on HPSO Algorithm. city, 5, 6.

[20] Pawar, A., Scholar, M. T., & Kapgate, P. D. (2014). A Review on Virtual

Machine Scheduling in Cloud Computing. vol, 3, 928-933.

[21] Shojafar, M., Javanmardi, S., Abolfazli, S., & Cordeschi, N. (2015). FUGE: A

joint meta-heuristic approach to cloud job scheduling algorithm using fuzzy theory

and a genetic method. Cluster Computing, 18(2), 829-844.

[22] Zhang, F., Cao, J., Li, K., Khan, S. U., & Hwang, K. (2014). Multi-objective

scheduling of many tasks in cloud platforms. Future Generation Computer

Systems, 37, 309-320.

[23] Quang-Hung, N., Tan, L. T., Phat, C. T., & Thoai, N. (2014). A GPU-Based

Enhanced Genetic Algorithm for Power-Aware Task Scheduling Problem in HPC

Cloud. In Information and Communication Technology (pp. 159-169). Springer

Berlin Heidelberg.

[24] Tsai, C. W., & Rodrigues, J. J. (2014). Metaheuristic scheduling for cloud: A

survey. Systems Journal, IEEE, 8(1), 279-291.

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 6 November 2015

International Manuscript ID : 2249054XV5I6112015-02

[25] Lin, W., Liang, C., Wang, J. Z., & Buyya, R. (2014). Bandwidth‐aware

divisible task scheduling for cloud computing. Software: Practice and

Experience,44(2), 163-174.

[26] Kumar, M., & Doegar, A. (2014). Reliable and Efficient Task Scheduling

based on Genetic Algorithm in Cloud Computing Environment.

[27] Frîncu, M. E. (2014). Scheduling highly available applications on cloud

environments. Future Generation Computer Systems, 32, 138-153.

[28] Yang, T., & Gerasoulis, A. (2014, June). Author retrospective for PYRROS:

static task scheduling and code generation for message passing multiprocessors.

In 25th Anniversary International Conference on Supercomputing Anniversary

Volume (pp. 18-20). ACM.

[29] Leena, V. A., & Rajasree, M. S. (2016). Genetic Algorithm Based Bi-

Objective Task Scheduling in Hybrid Cloud Platform. International Journal of

Computer Theory and Engineering, 8(1),

[30] Xu, Y., Li, K., Hu, J., & Li, K. (2014). A genetic algorithm for task scheduling

on heterogeneous computing systems using multiple priority queues.Information

Sciences, 270, 255-287.

[31] Lin, J., Zhong, Y., Lin, X., Lin, H., & Zeng, Q. (2014). Hybrid Ant Colony

Algorithm Clonal Selection in the Application of the Cloud's Resource

Scheduling. arXiv preprint arXiv:1411.2528.

[32] Zdenek Konfrst, “ Parallel Genetic Algorithms: Advances, Computing Trends,

Applications and Perspectives”, 18th International Parallel and Distributed

Processing, 2004.

[33] Marin Golub, Leo Budin, “An Asynchronous Model of Global Parallel

Genetic Algorithms” Unska 3, HR-10000 Zagreb, Croatia

International Journal of Computing and Corporate Research

ISSN (Online) : 2249-054X

Volume 5 Issue 6 November 2015

International Manuscript ID : 2249054XV5I6112015-02

