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ABSTRACT 

This research task is focused on the developed and implementation of a unique and effective 

approach in the cloud infrastructure for the higher throughput and less cost in the job 

scheduling. The proposed algorithm is implemented and integrated using genetic algorithm 

for optimization of the results including the cost and performance factor. The system is 

generating efficient results in terms of the optimal solution when executed using genetic 

algorithm. In this approach, the technique is efficient also in terms of the execution and 

turnaround time despite of the number of iterations. The limitations may be included 

regarding the proposed work in terms of its further enhancement using assorted 
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metaheuristics. The proposed system gives better results in executed using genetic algorithm 

that is one of the prominent metaheuristic techniques. 

 

Keywords – Multiprocessor Job Scheduling, Scheduling in Cloud, Cloud Computing 

 

INTRODUCTION 

Real-time multiprocessor systems are now commonplace. Designs range from single-chip 

architectures, with a modest number of processors, to large-scale signal-processing systems, 

such as synthetic-aperture radar systems. For uniprocessor systems, the problem of ensuring 

that deadline constraints are met has been widely studied: effective scheduling algorithms 

that take into account the many complexities that arise in real systems (e.g., synchronization 

costs, system overheads, etc.) are well understood. In contrast, researchers are just beginning 

to understand the trade-offs that exist in multiprocessor systems. 

 

Traditionally, there have been two approaches for scheduling periodic task systems on 

multiprocessors: partitioning and global scheduling. In global scheduling, all eligible tasks 

are stored in a single priority-ordered queue; the global scheduler selects for execution the 

highest priority tasks from this queue. Unfortunately, using this approach with optimal 

uniprocessor scheduling algorithms, such as the rate-monotonic (RM) and earliest-deadline-

first (EDF) algorithms may result in arbitrarily low processor utilization in multiprocessor 

systems . However, recent research on proportionate fair (Pfair) scheduling has shown 

considerable promise in that it has produced the only known  optimal method for scheduling 

periodic tasks on multiprocessors. 

 

In partitioning, each task is assigned to a single processor, on which each of its jobs will 

execute, and processors are scheduled independently. The main advantage of partitioning 

approaches is that they reduce a multiprocessor scheduling problem to a set of uniprocessor 

ones. Unfortunately, partitioning has two negative consequences. First, finding an optimal 

assignment of tasks to processors is a bin-packing problem, which is NP-hard in the strong 

sense. Thus, tasks are usually partitioned using non-optimal heuristics. Second, as shown 
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later, task systems exist that are schedulable if and only if tasks are not partitioned. Still, 

partitioning approaches are widely used by system designers. 

 

In addition to the above approaches, we consider a new “middle” approach in which each job 

is assigned to a single processor, while a task is allowed to migrate. In other words, inter-

processor task migration is permitted only at job boundaries. We believe that migration is 

eschewed in the design of multiprocessor real-time systems because its true cost in terms of 

the final system produced is not well understood. As a step towards understanding this cost, 

we present a new taxonomy that ranks scheduling schemes along the following two 

dimensions: 

 

P fair scheduling - In recent years, much research has been done on global multiprocessor 

scheduling algorithms that ensure fairness. Proportionate-fair (Pfair) scheduling, proposed by 

Baruah et al. , is presently the only known optimal method for scheduling recurrent real-time 

tasks on a multiprocessor system. Under Pfair scheduling, each task is assigned a weight that 

specifies the rate at which that task should execute: a task with weight w would ideally 

receive w · L units of processor time over any interval of length L. Under Pfair scheduling, 

tasks are scheduled according to a fixed-size allocation quantum so that deviation from an 

ideal allocation is strictly bounded.Currently, three optimal Pfair scheduling algorithms are 

known: PF , PF, and PD2 . Of these algorithms, PD2 is the most recently developed and the 

most efficient. 

 

The primary advantage of Pfair scheduling over partitioning is the ability to schedule any 

feasible periodic, sporadic, or rate-based task system
3

. Hence, Pfair scheduling algorithms can 

seamlessly handle dynamic events, such as tasks leaving and joining a system. Furthermore, 

fair multiprocessor scheduling algorithms are becoming more popular due to the proliferation 

of web and multimedia applications. For instance, Ensim Corp., an Internet service provider, 

has deployed fair multiprocessor scheduling algorithms in its product line. 
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The main disadvantage of Pfair scheduling is degraded processor affinity. Processor affinity 

refers to the tendency of tasks to execute faster when repeatedly scheduled on the same 

processor. This tendency is usually the result of per-processor first-level caching. 

Preemptions and migrations, both of which tend to occur frequently under Pfair scheduling, 

limit the effectiveness of these first-level caches and can lead to increased execution times 

due to cache misses. On the other hand, under partitioning with EDF, there is no migration 

and the number of preemptions on a processor is bounded by the number of jobs on that 

processor (assuming independent tasks). 

 

Layer-Based Scheduling Algorithms - There has been a lot of research regarding scheduling 

algorithms for independent M-Tasks. However, these scheduling algorithms cannot cope with 

precedence constraints between M-Tasks. This limitation can be avoided using layer-based 

scheduling algorithms3 for MTasks with precedence constraints. These algorithms utilize a 

shrinking phase and a layering phase to decompose an M-Task dag into sets of independent 

M-Tasks, called layers. The subsequent layer scheduling phase computes a schedule for each 

layer in isolation. Our extension strategy enables the combination of the shrinking phase, the 

layering phase and the assembling phase with a scheduling algorithm for independent M-

Tasks in the layer scheduling phase. Therefore, any scheduling algorithm for independent M-

Tasks can be extended to support M-Task dags.  

 

Layer Scheduling Algorithms - In this phase an M-Task schedule is computed for each 

constructed layer VLi , i = 1, . . . , l in isolation. In the following we omit the index i and use 

VL for the layer to be scheduled. 

 

Two L-Level determines the total execution time for each possible partitioning of the set of 

available processors into Κ, Κ = 1, . . . , min(P, |VL|) subgroups ˆg Κ,1, . . . ˆgk,k of about 

equal size
3
. The schedule for each of these partitionings is computed by adopting a list 

scheduling heuristic. In each step of this heuristic the M-Task v € VL is assigned to group ˆg* 

€{ˆg Κ,1, . . . ˆg Κ, Κ }, where ˆg Κ is the first subgroup becoming available and v is the M-Task 

with the largest execution time. The final processor groups g1, . . . , g Κ* are computed by a 
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subsequent group adjustment step from the groups ˆg Κ*,1, . . . , ˆgk*,k* , where Κ* denotes the 

partitioning resulting in a minimum runtime. 

 

Two L-Tree starts by constructing a tree for each M-Task v € VL consisting of a single 

node8. A dynamic programming approach is used to find all unordered pairs of trees {t1, t2} 

with an equal depth and disjoint sets of M-Tasks. For each pair {t1, t2} a new tree t with a 

new root node and children t1 and t2 is created. Each tree represents a schedule of the 

contained M-Tasks. The inner nodes of the trees are annotated with a cost table containing 

the execution time of the whole subtree for all possible processor group sizes g
s
 = 1, . . . , P. 

A second annotation defines whether the schedules represented by the children of the node 

should be executed one after   other or in parallel on disjoint processor groups. Finally, a set 

of trees each containing all nodes of the current layer is constructed, where each such tree 

symbolizes a different schedule. The output schedule of the algorithm is constructed from the 

tree which admits the minimum execution time. 

 

LLREF Scheduling Algorithm Model - We consider global scheduling, where task migration 

is not restricted, on an SMP system with M identical processors. We consider the application 

to consist of a set of tasks, denoted T = {T1, T2, ..., TN}. Tasks are assumed to arrive 

periodically at their release times ri. Each task Ti has an execution time ci, and a relative 

deadline di which is the same as its period pi. The utilization ui of a task Ti is defined as ci/di 

and is assumed to be less than 1. We assume that tasks may be preempted at any time, and are 

independent, i.e., they do not share resources or have any precedences. 

 

GENETIC ALGORITHM 

Genetic algorithms (GAs) are search methods based on principles of natural selection and 

genetics (Fraser, 1957; Bremermann, 1958; Holland, 1975). We start with a brief introduction 

to simple genetic algorithms and associated terminology. 

 

GAs encode the decision variables of a search problem into finite-length strings of alphabets 

of certain cardinality. The strings which are candidate solutions to the search problem are 
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referred to as chromosomes, the alphabets are referred to as genes and the values of genes are 

called alleles. For example, in a problem such as the traveling salesman problem, a 

chromosome represents a route, and a gene may represent a city. In contrast to traditional 

optimization techniques, GAs work with coding of parameters, rather than the parameters 

themselves. 

 

To evolve good solutions and to implement natural selection, we need a measure for 

distinguishing good solutions from bad solutions. The measure could be an objective function 

that is a mathematical model or a computer simulation, or it can be a subjective function 

where humans choose better solutions over worse ones. In essence, the fitness measure must 

determine a candidate solution’s relative fitness, which will subsequently be used by the GA 

to guide the evolution of good solutions. 

 

Another important concept of GAs is the notion of population. Unlike traditional search 

methods, genetic algorithms rely on a population of candidate solutions. The population size, 

which is usually a user-specified parameter, is one of the important factors affecting the 

scalability and performance of genetic algorithms. For example, small population sizes might 

lead to premature convergence and yield substandard solutions. On the other hand, large 

population sizes lead to unnecessary expenditure of valuable computational time. Once the 

problem is encoded in a chromosomal manner and a fitness measure for discriminating good 

solutions from bad ones has been chosen, we can start to evolve solutions to the search 

problem using the following steps: 

 

Initialization. The initial population of candidate solutions is usually generated randomly 

across the search space. However, domain-specific knowledge or other information can be 

easily incorporated. 

 

Evaluation. Once the population is initialized or an offspring population is created, the 

fitness values of the candidate solutions are evaluated. 

 



International Journal of Computing and Corporate Research 

ISSN (Online) : 2249-054X 

Volume 5 Issue 6 November 2015 

International Manuscript ID : 2249054XV5I6112015-02 

 

Selection. Selection allocates more copies of those solutions with higher fitness values and 

thus imposes the survival-of-the-fittest mechanism on the candidate solutions. The main idea 

of selection is to prefer better solutions to worse ones, and many selection procedures have 

been proposed to accomplish this idea, including roulette-wheel selection, stochastic 

universal selection, ranking selection and tournament selection, some of which are described 

in the next section. 

 

Recombination. Recombination combines parts of two or more parental solutions to create 

new, possibly better solutions (i.e. offspring). There are many ways of accomplishing this 

(some of which are discussed in the next section), and competent performance depends on a 

properly designed recombination mechanism. The offspring under recombination will not be 

identical to any particular parent and will instead combine parental traits in a novel manner 

(Goldberg, 2002). 

 

Mutation. While recombination operates on two or more parental chromosomes, mutation 

locally but randomly modifies a solution. Again, there are many variations of mutation, but it 

usually involves one or more changes being made to an individual’s trait or traits. In other 

words, mutation performs a random walk in the vicinity of a candidate solution. 

 

Replacement. The offspring population created by selection, recombination, and mutation 

replaces the original parental population. Many replacement techniques such as elitist 

replacement, generation-wise replacement and steady-state replacement methods are used in 

GAs. 

 

Goldberg (1983, 1999a, 2002) has likened GAs to mechanistic versions of certain modes of 

human innovation and has shown that these operators when analyzed individually are 

ineffective, but when combined together they can work well. This aspect has been explained 

with the concepts of the fundamental intuition and innovation intuition. The same study 

compares a combination of selection and mutation to continual improvement (a form of hill 

climbing), and the combination of selection and recombination to innovation 
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(crossfertilizing). These analogies have been used to develop a design-decomposition 

methodology and so-called competent GAs—that solve hard problems quickly, reliably, and 

accurately—both of which are discussed in the subsequent sections. 

 

KEY POINTS OF THE SYSTEM 

• The proposed system is generating efficient results in terms of the optimal solution 

when executed using genetic algorithm. 

• The proposed technique is efficient also in terms of the execution and turnaround time 

despite of the number of iterations 

• The limitations may be included regarding the proposed work in terms of its further 

enhancement using assorted metaheuristics. 

• The proposed system may give better results in executed using simulated annealing 

that is one of the prominent metaheuristic technique. 

 

PLATFROM SETUP FOR THE IMPLEMENTATION 

• JDK 

• Eclipse IDE 

• CloudSim 

• GridSim 

• JUnit 

• JCharts 
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Fig. 1 – Allocation of Tasks to VM and related aspects 
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The implementation is done in Eclipse IDE with Cloud and Grid Simulators in the External 

JAR Libraries for compatibility with Cloud and Grid Infrastructure. It is found and concluded 

from the results that EDSRTF algorithm is having effective results in cumulative way if we 

consider all the parameters in investigation as a whole level. 

• The existing and base multiprocessor scheduling approaches are having huge 

pitfalls more execution time 

• The basic solution obtained without swarm intelligence is not efficient in terms of 

the turnaround time and optimal results 

• To investigate the drawbacks and shortcomings in the classical multiprocessor 

scheduling 

• To propose and implement a novel technique for the simulation of genetic 

algorithm based multiprocessor scheduling 

 

PROPOSED ALGORITHM 

1. To design the matrices and blocks of the computation cost as well as communication. 

2. Assignment of priorities to tasks. 

3. Calculate EST=0 & EFT=0 of task 1 on each processor, set process avail time for 

p1,p2,p3=0. Assign processor to task1 on which EFT is minimum 

either p1=EFT (T1or task1) or p2=EFT (T1) or P3=EFT(T1)  

4. Activation of the Genetic Algorithm and its aspects 

a. for t2 to tn repeat above 

5. Calculate if (parent of t1 executed on p1) 

6. EST (tn) on p1=max (parent executed) 

a. p2=max (parent completion+Communication cost), processor avail time) 

7. EST (tn) on p3= same as above 

8. EFT=EST+Computation cost 

9. Effective Comparison between the classical approach and proposed Approach 

 

RESEARCH METHODOLOGY 

• Collection of the Training Data Set for Analysis 
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• Implementation of the Computation Cost Matrix 

• Applying Genetic Algorithm on the Multiprocessor Scheduling 

• Applying the proposed model on the Training data set 

• Fetch Results 

• Data Interpretation 

 

In the complete implementation and research task, following aspects and reference is used 

regarding classical and proposed approach 

 

Classical / Existing Approach -  

GAMP (Greedy Approach Based Multiprocessor Scheduling) 

 

Proposed Approach -  

GAMBS (Genetic Algorithm Metaheuristic Based Scheduling)  
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Fig. 2 – Simulation Scenario 

 



International Journal of Computing and Corporate Research 

ISSN (Online) : 2249-054X 

Volume 5 Issue 6 November 2015 

International Manuscript ID : 2249054XV5I6112015-02 

 

 

Fig. 3 – Simulation Completion Status 
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Figure 4 - Line Graph Analysis of the Classical and Proposed Approach 
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Figure 5 – Bar Graph Analysis of the Classical and Proposed Approach
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Bar Graph Analysis of the Classical and Proposed Approach
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Figure 6 – Cost Factor Graph Analysis of the Classical and Proposed Approach

Classical / Existing Approach is not having effectiveness and efficiency as compared to 

GA based approach. The classical work is take

integration of metaheuristic based simulation.

with the integration of GA to evaluate the efficiency and related cost factor.

 

Figure 7 – Cost Factor Line Graph Analysis of the Approaches
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Cost Factor Graph Analysis of the Classical and Proposed Approach

 

Classical / Existing Approach is not having effectiveness and efficiency as compared to 

GA based approach. The classical work is taken as the implementation without 

integration of metaheuristic based simulation. Tasks executed without GA and then 

with the integration of GA to evaluate the efficiency and related cost factor.
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very less as compared to the classical approach. The execution time in the classical 

work is taking higher units as compared to the proposed work. 

 

Tasks executed without GA and then with the integration of GA to evaluate the 

efficiency and related cost factor. 

 

Table 1 - Tabular Comparison of the Results Obtained 

 W T E P C CF 

FCFS 10 50 75 85 690 35 

LJF 14 550 20 40 20 300 

EDSRTF 8 20 70 87 680 20 

GA 7 18 95 96 670 18 

 

It is evident from the simulation results and Table 1 that the cumulative result based on all the 

parameters are effective and better in the proposed approach name GA. 

 

W – Waiting Time 

The amount of time a process has been waiting in the ready queue in the process of 

execution. 

 

T – Turnaround Time 

Amount of time taken to complete a particular process. 

 

E – Efficiency 

The number of process that completes its execution per time unit. 

 

P – Performance 

Performance (P) is directly associated with the degree of Efficiency (e) 

 

C – Complexity 
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Complexity of a structured program is defined with reference to the control flow graph of the 

program, a directed graph containing the basic blocks of the program, with an edge between 

two basic blocks if control may pass from the first to the second. 

 

The complexity C is then defined as 

C = E − N + 2P, 

 

where 

E = the number of edges of the graph. 

N = the number of nodes of the graph. 

P = the number of connected components. 

 

n alternative formulation is to use a graph in which each exit point is connected back to the 

entry point. In this case, the graph is strongly connected, and the cyclomatic complexity of 

the program is equal to the cyclomatic number of its graph (also known as the first Betti 

number), which is defined as 

 

C = E − N + P. 

 

This may be seen as calculating the number of linearly independent cycles that exist in the 

graph, i.e. those cycles that do not contain other cycles within themselves. Note that because 

each exit point loops back to the entry point, there is at least one such cycle for each exit 

point. 

 

CF – Cost Factor 

r => n * (1/t) * rnd 

n -> Length of the Input 

t -> Execution Time 

rnd -> Random Fuzzy Random 
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c = 1/(r * (p + e)) * 100 

 

 

 

Fig. 8 – Cumulative Analysis of the Paramters 

 

CONCLUSION AND FUTURE WORK 

Because of the advances in the technology, the issues and further scope in science and 

engineering are becoming more complicated than ever before. To solve these complicated 

problems, grid computing becomes a popular tool. A grid environment collects, integrates, 

and uses heterogeneous or homogeneous resources scattered around the globe by a high-

speed network. A grid environment can be classified into tw types: computing grids and data 

grids. This research work focuses on job scheduling algorithms and their performance on 

multiple parameters in the grid environment. In computing grid, job scheduling is a very 

important task. A good scheduling algorithm can assign jobs to resources efficiently and can 

balance the system load. 

 

For future scope of the work, following techniques can be used in hybrid approach to better 

and efficient results – 
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• Particle Swarm Optimization 

• HoneyBee Algorithm 

• Simulated Annealing 

• Genetic Algorithmic Approaches 
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