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Abstract 

The notions of a pseudoinvex functions and pseudoinmon operator are introduced, with 

cyclic pseudoinmon operator also. In this paper, we are studying the relation among 

pseudoinvex functions. Pseudoinmon and cyclic pseudoinmon operators. 
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1.Introduction: 

The notion of a (not necessary single-valued) monotone operator was first proposed by 

Kachurovaskii[3], interested reader may see[4,5] , cyclically monotone operator was 

introduced and investigated byRockafellar[6-9].  

For a given smooth function f on a convex domain characterization of its convexity in 

terms of monotonicity or cyclically monotonicity of grad f are known as follows: 

f is convex ⇔ grad f is monotone ⇔ grad  f is cyclically monotone           ----- (A) 

Levin [12], get similar characterization  theorems connecting 
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f is quasiconvex ⇔ grad f is quasimonotone ⇔ grad  f is quasicyclically monotone- (B) 

The term inmonicity was introduced in [13] and showed that 

Pseudoinmonicity ⇒ quasiinmonicity , but converse is not true.  ---------- (C) 

On the other hand invexity of a real-valued function , the relation in  

Pseudoinvexity ⇒ quasiinvexity , but converse is not true.           ---------- (D) 

In [12] , Levin showed that such operators are closely related to the so-called demand 

functions in mathematical economics.  It  is worth noting that monotonicity has played a 

very important role in the  existence and solution methods of variational inequality 

problems. A plenty of applications of solutions of variational inequality problems are 

present in the convexity literature . 

Our aim of present paper is to get characterization theorems connecting pseudoinvex 

functions with pseudoinmon and   cyclically pseudoinmon operators.  

2.Notations and Preliminaries: 

Let W be a Hausdroff locally convex space, X a convex set in it, and w
*
 the dual space. 

Definition 2.1 [12] An operator *: wXf →  is  Pseudomonotone if  

                             0)(),(0)(, >≥−⇒<>≥−< yfxyxfxy                             …… …(1.1) 

                               Xyx ∈∀ ,  

Definition 2.2 [12] An operator *: wxf → is cyclically pseudomonotone if  

                            kixfxx iii ,...,2,1                 0        )(:1 =∀>>−< +  
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                            kjxfxx jjj ,...,2,1   somefor           0        )(:1 =<>−⇒< +           

Definition 2.3 [13] A differentiable operator f on a subset nRX ⊆  is a Pseudoinvex with 

respect to XXxX →:η  if for every pair of distinct points x,y X∈   

).()(0)(),( ' xfyfxfxy T ≥⇒≥η           

 

Definition 2.4 [13 ] Let X nR⊆  be an invex set with respect to XXxX →:η and 

RXf →:  is pseudoinmon on X if ., Xyx ∈∀  

.0)(),(0)(),( ≤⇒≥ yfxyxfxy TT ηη  

 

The goal of the present paper is to get characterization theorem connecting Pseudo invex 

functions, Pseudo inmon and cyclically Pseudoinmon operators on an invex domain. 

3. Characterization Theorem: 

    Let  X be an invex set in a real vector space.   

Definition 3.1 Let X nR⊆ be an invex set with respect to XXxX →:η , 

RXf →: is said to cyclically pseudoinmon with respect to 

0),(),(:)(    },,....,2,1{   1 >≥<∃=∃ + iiii xxnxfxfki  

       0).(),( 11 >≤< ++ iii xxnxf  

Let us define. 

)),(();,,( xytnxftyxf +=φ          … (3.1) 
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Theorem 3.1 Let X be an invex open set in a Hausdroff locally convex space w, and 

suppose that a function RXf →:  has two properties as follows: 

(i) f is teaux
∧

aG  differentiable on X, i.e. every x X∈ , there exist an element 

gradf(x) *w∈ such that 

.),( all )( ),,(
)()),((

lim
0

Exyforxfgradxy
t

xfxytxf

t
∈>=<

−+
→∆

ηη
η

 

(ii) for every x,y X∈ ,the function ;.),,( yxfφ given by (3.1) is absolutely 

continuous on [0,1]. 

The following assertions are then equivalent: 

(a) f  is pseudoinvex, 

(b) the operator grad f is cyclically pseudoinmon 

(c) The operator grad f is pseudoinmon. 

   Before to pass on to a more general characterization theorem, let us formulate two 

assumption (D 1 ) and (D 2 ), on a function RXf →: , where X is an invex set in a real 

vector space.The assumptions are expressed in terms of the functions ;.),,( yxfφ  (see 

(3.1)) as follows: 

(D1) for every x,y X∈ and every ,10, ≤≤ tt  there exist the right derivative 

       D =);,,( tyxfφ
t

tyxfttyxf

t ∆
−∆+

→∆

);,,();,,(
lim

0

φφ
   --------------- (3.2) 

(D2)for every x,y X∈ , ;.),,( yxfφ is absolutely continuous on [0,1]. 

        It follows from  (D1) and (D2) that 
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                          where x,y X∈     …(3.3) 

       Note that if (D1) holds, then for every x,y X∈ , the directional derivative is defined as 

follows: 

         
t

xfxytxf
yxfDxyxf

t

)()),((
lim)0;,,()),(,(

0

' −+
==

→

η
φη  …(3.4) 

Theorem 3.2   Let X be an invex subset in a real vector space and RXf →: , satisfy (D1
) 

and (D2), the following assertions are then equivalent: 

(a) f is pseudoinvex; 

(b) for every integer kand every cycle x0, x1,…., xk, xk+1= x0 in X, the inequality 

             0   ),(),(:)(  },...,0{ 1

' ≥><∃∈∃ + iiii xxxfxfki η  

            0   ),(),( 11

' ≤>⇒< ++ iii xxxf η  hold; 

(c) for every x,y X∈  , the inequality 

      0)(),( ' ≥xfxy Tη   ⇒  0)(),( ' ≤yfyx Tη  holds. 

 

4. Proofs 

Proofs of theorem (3.1) observe that if f is  teaux
∧

aG  differentiable on x, then 

(D1)holds and >=< )( ),,()),(,(' xfgradxyxyxf ηη for all x,y X∈ , theorem(3.1) is 

then a direct consequence of theorem(3.2) 

Proof of theorem3.2  
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(a)⇒ (b). If (b) fails, then for some cycle x0, x1,…, xk+1=x0  in x, 

       kixxxf iii ,...,1,0  ,0)),(,( 11

' =>++ η  

we have ,0)0;,,( 1 >+ ii xxfDφ  so 

        );,,()0;,,( 11 txxfxxf iiii ++ < φφ   for small t > 0 …(4.1) 

and as ;.),,( 1 ii xxf +φ  is pseudoinvex on [0,1], it follows from (4.1) that  

              ;.),,(;.),,( 11 iiii xxfxxf ++ > φφ  

i.e. )()( 1 ii xfxf >+ , we obtain a contradictory chain of inequalities 

            )()()(...)()( 0110 xfxfxfxfxf kk =<<<< +  

and the contradiction means that (b) is true. 

      (b)⇒ (c), obvious. 

      (c)⇒ (a), suppose f is not pseudoinvex, There exist then x,y X∈ , and 0λ , 10 0 << λ , 

such that 

           f(x+ )()),(0 yfxy >ηλ    … (4.2) 

we claim that there exist 1λ and 2λ , 10 201 <<<< λλλ , such that 

        0);,,( 1 >λφ yxfD     …(4.3) 

and  0)1;,,( 2 >− λφ xyfD      … (4.4) 

But, if 0);,,( ≤λφ yxfD  for all 00, λλλ << ,     then with (3.3) and the identity 
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);,,():),((,,( 00 λλφληλφ yxfxyyxf =+  

we obtain, 

λληλφηλ dxyxxfDxfxyxf ∫ ++=+
1

0

00 ));,(,,()()),((  

                           λλλφ dyxfDxf ∫+=
1

0

0 );,,()(  

                           ∫ ≤+=
0

00

)();,,(
1

)(

λ

φ
λ

xfdrryxfDxf  

which contradicts (4.2), 

then if 210&   0);,,( λλλλφ −<<∀≤xyfD , then   

λληλφηλ dxyxyfDyfxyxf ∫ ++=+
1

0

00 ));,(,,()()),((  

)()),,,(
1

1
)(                   

01

00

yfdrrxyfDyf ≤
−

+= ∫
−λ

φ
λ

 

which again contradicts (4.2). The claim is thus proved. 

Set how      2,1        ;)1( =+−= kyxx kkk λλ  

And using (4.3) and (4.4) and the identities, 

                    ))(;,,();,,( 12121 λλλλφλφ −+= yxfxxf  

                    ))(1;,,();,,( 12221 λλλλφλφ −+−= xyfxxf  
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hence 

             0);,,()()0,,,()),(,( 11221121

' >−== λφλλφη yxfDxxfDxxxf  

             0)1;,,()()0,,,()),(,( 21212212

' >−−== λφλλφη xyfDxxfDxxxf  

Hence a contradiction with (c). 
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