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ON UNIVEXITY-TYPE NONLINEAR PROGRAMMING PROBLEMS

IN COMPLEX SPACES

DEO BRAT OJHA
DEPARTMENT OF MATHEMATICS

R.K.G.I.T.Ghaziabad,(U.P.)-INDIA

Abstract :

In this paper , we will study a new class of nonlinear programming called SFJ-univex introduced
in [13] in complex spaces , combining the concepts of SFJ-invex programming and univex
functions in complex spaces. Optimality and duality results for several mathematical programs

are obtained under the above —mentioned assumption .

1.Introduction :

Consider the following nonlinear programming problem :

(p) min Re f[z,z, w,w]
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such that Re g[z,z,w,w]<0 , [z,z,w,w]e , C"xC"xC"xC"
where [:C"xC"xC"xC" > C, g:C"xC"xC"xC" > C.

Several classes of functions have been defined for the purpose of weakening the limitations of
convexity in the mathematical programming problem (P).
Xu[l6] proposed the new class of nonlinear programming , called SFJ-invex
programming,which lies between invex programming and type I programming [3,6,7].
Bector et al. [2] introduced the concept of univexity as a generalization of convexity. Recently ,
Rueda et al. [10] introduced a new class of functions , combining the concepts of type I and
univex functions and obtained optimality and duality results for several mathematical programs
.Then further S.K.Mishra and N.G.Rueda [13] introduced and discussed SFJ-univex
programming problems .This paper can be view as extension of [13] in complex spaces.
Again after enhancement of these area after introduction in complex spaces these area become

wider then a lot of consequence of papers have been published yet , some of them are

[1L[4L[SLI8LITTL,[14],[15].

2. Preliminaries:
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In this paper , we introduced the SFJ-univex functions in complex spaces and proposed the
following .

To compare vectors along the lines of Mangasarian , we will distinguish between < and < or >
and > , specifically ,in complex space . Let For C" denote an n-dimensional complex spaces

.For ze(C" , let the real vectors Re (z) and Im (z) denote the real and imaginary parts ,

X
ecm n

2

respectively , and let z= Re(z) — ilm(z) be the conjugate of z . Given a matrix A= [a sz
where C™*"is the collection of mxn complex matrices , let 4 = lﬁ p Je C™>* ™ denote its

conjugate matrix , let 4t - lc? JJ denote its conjugate transpose . The inner product of x,y e C"
is (x,y)=y"x Let R+ denote the half line [0,00[ .

zeC" ,ve(C", Re(z)SRe(v) & Re(z,)<Re(v,), foralli=1,2,.,.,.,n, Re(z) # Re(v) .

Similar notations are applied to distinguish between > and >.

For a complex function f:C"xC"xC"xC" — C analytic with respect to (z(wl,wz),

ze C", define gradients by
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vZfi(v’ ‘_}’ g):[ail (V, ‘75 é/)] 1:172"7'7"n .
vE-fl(vﬂ ‘_}7 é/):[ afz (V7 ‘77 é/)] i:172’-’-’-’n .
ow;

1

Definition 2.1:
The Problem (P) is said to be SFJ-univex if there exist  : C"xC"xC"xC" —C,

¢, C—>C.,$.:C—>C,i=12,...,m,by:C"xC"xC"xCc™ > C,,

bi :C"xCtxC™MxCc™ 5, ,i=1.2,.,.,.k .
Such that

\ ( Re[by (2,2,2: ) 0 U (2,200 = (2.2 W W)}

= n n — — T — —
(Z()ﬁZO) EC XC ZRe[VZf(ZoazoawaW)n (Zazazoazo) (1)

— — T — —
+sz(207203 W, W)77 (ZyZ,ZOaZ())]

(z,z) e C"x C" If Re[g,(z,z,w,w)]=0,i =1,2,.,.,., k.then
J \
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Relb (27,2,7,) 18 ()]
>Re[V Zg(ZO,EO,w,v_v)if (z,z,z ,EO) (2)
+Vzg(zo,20,w,v_v)7f (z,z,z ,EO)]

Definition 2.2:

The Problem (P) is said to be SFJ-invex if there exist 7 : C"xC"xC" xC" — C, Such that

A\ @e[ [ (z,2,0,0) = [(2,Z W, W)]
(zy,2,) €C"xC" ZRe[VZf(ZO,EO,W,W)UT(Z,E,ZO,EO) 3)

— —\ T — —
+V§f(zoazoawaw)77 (Zazazoazo)]

=
(z,7) €C"xC" > < If Re[g, (z,z,w,w)] =0,i =1,2,....., k.then

Re[gl,(z, z,w,w)]

2Re[V_g,(z,.Z,,w. W' (2.7.2,, ) (4)

— —\ .. T — —
O’ZO’W,W)U (272720720)]

+V2gi(z
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Theorem 2.1:
Every SFJ-invex program is an SFJ-univex program , but the converse may not be true .
Proof:

Assume that a given program (P) is SFJ-invex , i.e., there exists a function

n:C'xC"xC"xC" — C, Such that

N\ | Relf Gz W) - £z, F 0w )]

(20,2,) €C"xC" 2Re[V_f(z,.Z,.w: W' (2.7,2. )
— —_.T — —

Y_[ (2% (2.2, 7,)]

If Re[g,(z,z,w,w)]=0,i=12,.,.,., k.then

A

(z,z) eC"xC" ?

Re[gl, (z,z,w,w)]

> Re[vzgf(ZO’EO’ w,w)n’ (z,Z, ZO’EO)

— — T — —
+V2gi(zoazoawa W)’] (272720720)]

\

Hence prob/lern (P) is  SFJ-univex  with  respect to b, =b, =1
Re[¢, (f)]=Re[ f] ,Re[¢l. (2)]= Re[gl. ], fori=1,2,.,.,..k and the same 7 .

For the converse part see the following example :

Example 2.1:
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Consider the following problem :

min f[z,Z,w,w]=z+Zz suchthat g[z,z,w,w]|=—-[z+Zz]+1<0
. . . | N
The problem is SFJ-univex with respect to 7[z,z,z,,Z,]= E[Z -z, +z-2,],

b,=b =1,0,(f)=f, ¢ =—g , at z, =1, but the problem is not SFJ-invex at z, =1 since

glz,,zy,w,w]=0 but

Re[gl. (z,z,w,w)]

= — T = = = — T = = -
ZRe[Vzgi(Z()’Z()aWaw)n (Z’Z’ZO’ZO)+vEgi(ZO’ZO’W’W)n (Zﬂzazoazo)]

—[z+E]+1—{%[z—1+E—1][—1]+%[z—1+E—1][—1]}:—[Z+E]+1+[Z+E]—2:—1£0

So the problem is SFJ-univex but not SFJ-invex .

3. Nonlinear programming :
In this section we will show that optimality and duality results still hold for the nonlinear
problem (P) under weaker generalized convexity conditions.

Theorem 3.1:Optimality :
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Let (zO,EO,w, w) be (P) feasible for the SFJ-univex problem (P) .Suppose that there
(u,u,w,w)e C"x C"x C" x C"

subject to

Re[V_flzy:ZqwWI+V_flz,.Z w,v_v]}+uTVZg{z z w,v_v]+uHV2g{z zZ o ww]l =0 (5)

070’ 070 070
Re[g, (24,2, W, W]]<O0=u, =0,u, =0,i=12,.,..k (6)
and u >0, (7
Further suppose that Re[¢,(f,)]=20=Re[f,]=0 ()
Re[f]<0= Re[¢,(f)]<0 )
and that Re[bo(z,Z,zo,ZO)]>0 (10)

for all feasible (z,z,w,w). Then (20,20, w,w)is an optimal solution of (P).

Proof :

Let (z,z,w,w) be (P) feasible . Then (1),(2),(5),(6),(7),(8),and (9) , we have

Re[b0 (z, E,ZO,EO){¢O {f(z,z,w,w) — f(ZO,EO,w,W)}]

ZRe[VZf(ZanOaW:W)n (Zazazoazo)+V2f(zoazoawaw)77 (ZaZaZOazo)]
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k k
— = —\,, T = = — - —\ T — —
= Re[ZuiVZgi(zO,zo,w,w)n (z,z,zo,zo)+;uivfg[(zo,zo,w,w)n (z,z,zo,zo)]

> —Re[g bi(z,2,2),2 ), 1, w, W) {p g (z,2,w,W)}}]2 0.

From (10), it follows that
Re{¢0 {f(Z,E, W,W) _f(ZO,EO,W,W)} >0

By (8) , we have Re[ f(z,z,w,w) — f(z w,w)]>0

0°%0°

Therefore , (z w, w) is an optimal solution of (P).

0°%0°

(D) Max. Re[ f(v,v,w,w)

Subject to

Re[{V_fTv,v,w, W+ V_f[v,o,w, W]} +x"V_glv,v,w,w]+x"V_glv, v, w,w]}]=0

Re{[y+¥]" glv,v,w,w]} 20, 20
Duality results can be obtained under similar conditions . We show some of them below.

Theorem 3.2 (weak duality):
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Let (x,x,w,w)be (P)-feasible and {(u,u,w,w),y} be (D)-feasible . If there exist
n,¢,,b,,9,,b,,i=12,.,.,.m , with @ strictly increasing , such that conditions (1),(2) and (8) are

satisfied at ((x,x,w,w),(u,u,w,w)) , y,= 0 when Re[g, (u,u,w,w)]> 0 , and

ibi(x,)_c,u,ﬁ)(y[ +¥.)¢, (g, (x,x,w,w)) <0, then Re[ f(x,x,w,w)— f(u,u,w,w)]=0.

i=1

Proof:
Assume that Re[ f(x,x,w,w) — f(u,u,w,w)]<0 . Then
Re[b, (x,x,u,u)@,{f(x,x,w,w) — f(u,u,w,w)}]<0 (11)

for all feasible (x, x,,u,u, y).
On the other hand , by the definition of SFJ-Univexity and the assumptions of the theorem , we
have

Re[b, (x,x,u,u)@,{f(x, %X, w,w) — f(u,u,w,w)}]

> Reln (x,%,u,0)V _f e, w,) + 77 (6, %u,0)V _f (10, w,)]

N AP Y AP S —
Re[77 (xaxauau)zyi ngi(u,u,w,w)+77 (X,X,M,U);y[ Vfg[(u,u,w,w)]

i=1

> —

bi (x, x,u,u)( yi+ fl. )¢l. (gl. (x,x,w,w)) >0, which contradicts (9). Hence the result .
i

1

™3
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Theorem 3.3 (Strong duality):

If (x,,x,,w,w)is (P)-feasible and a constraint qualification is satisfied at (x,,Xx,,w,w), then
there exists y, € C"such that (x,,x,,»,)is (D)-feasible and the values of the objective
functions for (P) and (D) are equal at (x,,,x,,w,w) and (x,,X,, ), ), respectively .Furthermore,

if for all (P)-feasible (x,x,w,w)and (D)-feasible (u,u, y), the hypothesis of the theorem 3.2 are

satisfied , then (x,,x,,»,) is (D)-optimal .

Proof:

Since a constraint qualification is satisfied at (x,,X,,w,w)then there exists y, € C"such that

the following Kuhn-Tucker conditions are satisfied .

Re[V  f Coyo T, 0) + i V@00 T 1) + Vo f (g By, ) + 2 Vg, By w,9)] =0

OF 4y e (x, .5, w,)=0,y, 20

Therefore (x,,, X, y,)1s (D)-feasible .

Suppose that (x,,x,,y, )is not (D)-optimal . Then there exists (D)-feasible (u,u, y ) such that
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Re[ f(xy, Xy, w,w) — f(u,u,w,w)]<0. This contradicts theorem 3.2 .

Therefore (x,,X,,y,)is (D)-optimal .

4. Multiobjective Programming :

Consider the following problems :

(MP) Min Re[f, (x,x,w,w)] such that Re[g J (x,x,w,w)]<0 , where
f; Cxcxc™xc™ 5 C,i=12.,.,.,.,p,and g; Cxcxc™Mxc™ 5, j=12,....k,
m,n<p,k , fl.and gj are all differentiable functions and the minimum is obtained in terms of

efficiency as defined below;
(MD) Max. Re[f, (u,u,w,w)]

subject to

Re[V 1] flaitw )+ ' g itow )} +V v/ f (it w i)+ 1 gt w.9)}]-0

Re[(yl.T +y7)g(u,b7,w,W)]ZO v>0,y>0.
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Definition 4.1:An (MP)-feasible (x,,x,,w,w)is said to be an efficient solution of (MP)if there
exists no (x,x,w,w) such that Re[ /' (x,x, w,w) — f(x,,X,, w,w)]<0 .

Now, we will establish optimality conditions for a point to be an efficient solution of (MP).

Theorem 4.1 (Optimality):
Let (x,,x,,w,w)be (MP)-feasible , suppose that there exist v, € C p ,y. €Ct 7, b,,b,,¢,and

¢,such that

Refby (4, %, X, B ) 0 (f (6%, 0,7) = f (xy T 0, W)}

T T H (12)
2Re[’7 (x,f,x*,)_C*){V* fo(x*,)_C*,W,W)+V* fo(x*,)_C*,W,W)}]
Re[b, (x, %, x,, %), (vh £(x,%,w,7)}] ;
> Re[n! (x,% X, Iy X, w Hy X, w )
- 6[77 (x,x,x*,x*){y* xg(x*,x*,W,W)+y* xg(x*,x*,W,W)}]
for all (MP)-feasible (x,x,w,w) and
T — .. T —

Re[V {vy f(u,u,w,w)+ y, gu,u,w, w)}

* (14)

+V)_C{v>,<Hf(u,b7, w, v_v)+yfg(u,b7, w,w)}]
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Ve 20,7, 20 (15)
further suppose that ' <0= ¢,(f) (16)
$(f)20=1>0 (17)
bo(x,)_c,x*,)_c*) > 0,b, (x,x,x,,%,) >0 (18)

for all feasible (x,x,w,w).Then (x,,X,,w,w)is an efficient solution of (MP).

Proof:

Let (x,x,w,w)be (MP)-feasible ,suppose that Re[ /' (x,x, w,w) — f(x,,X,,w,w)]<0. Then
Re[v] {(x, %, w,W) = f (x4, 5o w, W)} <0 ic,

Fro (14) and (16) it follows that

Refy (3, %, %y F )y (i (f (%, 9,39) = f (s By w, 9))11 0,

therefore by (12) Re[ryT (x, X, x*,)_c*){vzvxf(x*,)_c*, w, W)+ vﬂ{—lv)_cf(x*,)?*, w,w)}] <0,

then by (14) Re[” (x, %, x,, %) 10 Vg By, ) + {1 Vg, %y w, )} 20,

from (13) ,we obtain
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Refb, (x, )—c,x*,x*)(;ﬁl{(y*T + g (x, %, w,)}12 0. By (17) and (18) it follows that

(y{ + yfl )g(x,x,w,w)>0 , which is a contradiction to (13) and the (MP)-feasibility of
(x,x,w,w) .Therefore (x,,x,,w,w)is an efficient solution of (MP).

Theorem 4.2 (Weak duality):

Let (x,x,w,w)be (MP)-feasible and {(u,u,w,w), y} be (MD)-feasible . If there existn,b,,b,,d,

Re[bo (x, )_C,u,L_l)¢0 {v,{ (f(x,x,w,w)— f(u,u,w,w))}]

and ¢, such that
>Re[n” (v, %) () V[, w,w) + vV _f i, w, )}

Re[b, (x, %,u,)g, 1y g(x, ¥, w,W)}]

> Reln” (v, %, u,0) 1y V_glutt,w,w)+ piV _g(u,i, w,)}]
(16) and (17) hold and (18) is satisfied at ((x,x,w,w),(u,u,w,w))then
Re[f(xa )_Ca W,W) _f(u,b_l, W,W)] >0.

Proof:

The proof is similar to that of Theorem 4.1.

Theorem 4.3(Strong duality):
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If (x,,x,,w,w)is an efficient solution of (MP)and a suitable constraint qualification holds at
(X, X, w,w)as Singh’s[3] and analogous with Rueda and Mishra [13] , then there exist v, and
V4 such that ((x,,x,,w,w),v,,y,)is feasible for the dual (MD) and the values of the objective

functions for (MP) and (MD) are equal at (X4, Xy, w, W) and

((xg, Xy, W, W), V., ¥, ) respectively. Furthermore , if v*T f and y*T g satisfy conditions (12) and
(13) , @,and ¢, satisfy (16) and (17), and b, and b, satisfy (18) then ((x,,X,, w,W),V,,y,)is

efficient for (MD).
Proof:

From the assumption it follows that ((x,,x,,w,w),v,, y,)is (MD)-feasible . Suppose that it is

not efficient . Then there  exists ((u,u,w,w),v, y)feasible  such  that

Re[f(x,x, w,w) = f(xy, X, w,w)] 2 0.
This contradicts Theorem 4.2 . Hence , ((x,,, X,, W, W), V,, ¥, ) s efficient for (MD).

5. Conclusion:
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In this paper , we have extended an earlier work of Rueda et al. [10] to SFJ-univexity conditions
.Results for minmax programming and generalized fractional programming problems can be
obtained on similar lines .

Extension of this work under SFJ-pseudo-univexity in real spaces and other conditions would

extend anearlier work of Kaul et al.[12]. It also extends the work of [13] .
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