

or and Scientists

Volume 1 Issue 2 September 2011

ON UNIVEXITY-TYPE NONLINEAR PROGRAMMING PROBLEMS IN COMPLEX SPACES

DEO BRAT OJHA

DEPARTMENT OF MATHEMATICS

R.K.G.I.T.Ghaziabad,(U.P.)-INDIA

Abstract:

In this paper, we will study a new class of nonlinear programming called SFJ-univex introduced in [13] in complex spaces, combining the concepts of SFJ-invex programming and univex functions in complex spaces. Optimality and duality results for several mathematical programs are obtained under the above –mentioned assumption.

1.Introduction:

Consider the following nonlinear programming problem:

(p)
$$\min \operatorname{Re} f[z, \overline{z}, w, \overline{w}]$$

Volume 1 Issue 2 September 2011

such that $\operatorname{Re} g[z, \overline{z}, w, \overline{w}] \leq 0$, $[z, \overline{z}, w, \overline{w}] \in C^n \times C^n \times C^m \times C^m$

where $f: C^n \times C^n \times C^m \times C^m \to C$, $g: C^n \times C^n \times C^m \times C^m \to C$.

Several classes of functions have been defined for the purpose of weakening the limitations of convexity in the mathematical programming problem (P).

Xu[16] proposed the new class of nonlinear programming, called SFJ-invex programming, which lies between invex programming and type I programming [3,6,7].

Bector et al. [2] introduced the concept of univexity as a generalization of convexity. Recently, Rueda et al. [10] introduced a new class of functions, combining the concepts of type I and univex functions and obtained optimality and duality results for several mathematical programs. Then further S.K.Mishra and N.G.Rueda [13] introduced and discussed SFJ-univex programming problems. This paper can be view as extension of [13] in complex spaces.

Again after enhancement of these area after introduction in complex spaces these area become wider then a lot of consequence of papers have been published yet, some of them are [1],[4],[5],[8],[11],[14],[15].

2. Preliminaries:

Volume 1 Issue 2 September 2011

In this paper, we introduced the SFJ-univex functions in complex spaces and proposed the following.

To compare vectors along the lines of Mangasarian , we will distinguish between \leq and \leq or \geq and \geq , specifically ,in complex space . Let For C^n denote an n-dimensional complex spaces . For $z \in C^n$, let the real vectors Re (z) and Im (z) denote the real and imaginary parts , respectively , and let $\bar{z} = \operatorname{Re}(z) - \operatorname{iIm}(z)$ be the conjugate of z . Given a matrix $A = \begin{bmatrix} a_{ij} \end{bmatrix} \in C^{m \times n}$, where $C^{m \times n}$ is the collection of m×n complex matrices , let $\bar{A} = \begin{bmatrix} \bar{a}_{ij} \end{bmatrix} \in C^{m \times n}$ denote its conjugate matrix , let $A^H = \begin{bmatrix} \bar{a}_{ij} \end{bmatrix}$ denote its conjugate transpose . The inner product of $x, y \in C^n$ is $(x,y) = y^H x$. Let R_+ denote the half line $[0,\infty[$.

 $z \in C^n$, $v \in C^n$, $\text{Re}(z) \leq \text{Re}(v) \Leftrightarrow \text{Re}(z_i) \leq \text{Re}(v_i)$, for all i = 1, 2, ..., n, $\text{Re}(z) \neq \text{Re}(v)$.

Similar notations are applied to distinguish between \geq and \geq .

For a complex function $f: C^n \times C^n \times C^m \times C^m \to C$ analytic with respect to $\zeta = (w^1, w^2)$, $z \in C^n$, define gradients by

International Journal of Computing

Specialized and Refereed Journal for Research Scholars, Academicians, Engineers and Scientists

Volume 1 Issue 2 September 2011

$$\nabla_z f_i(v, \overline{v}, \zeta) = \left[\frac{\partial f}{\partial w_i^1}(v, \overline{v}, \zeta)\right] i=1,2,...,n$$
.

$$\nabla_{\overline{z}} f_i(v, \overline{v}, \zeta) = \left[\frac{\partial f}{\partial w_i^2}(v, \overline{v}, \zeta)\right] \quad i=1,2,...,n \ .$$

Definition 2.1:

The Problem (P) is said to be SFJ-univex if there exist $\eta : C^n \times C^m \times C^m \times C^m \to C$,

$$\phi_0: C \to C, \phi_i: C \to C, i = 1, 2, \dots, m, b_0: C^n \times C^n \times C^m \times C^m \to C_+,$$

$$b_i: C^n \times C^n \times C^m \times C^m \to C_+, i=1,2,...,k$$
.

Such that

$$\left\{ \begin{array}{l} \operatorname{Re}[b_{0}(z,\overline{z},z_{0},\overline{z}_{0})\{\varphi_{0}\{f(z,z,w,\overline{w})-f(z_{0},\overline{z}_{0},w,\overline{w})\}] \\ \geq \operatorname{Re}[\overline{\nabla_{z}f(z_{0},\overline{z}_{0},w,\overline{w})\eta^{T}(z,\overline{z},z_{0},\overline{z}_{0})} \\ + \overline{\nabla_{\overline{z}}f(z_{0},\overline{z}_{0},w,\overline{w})\eta^{T}(z,\overline{z},z_{0},\overline{z}_{0})} \end{array} \right.$$

$$\left\{ \begin{array}{l} \operatorname{Re}[b_{0}(z,\overline{z},z_{0},\overline{z}_{0})\{\varphi_{0}\{f(z,z,w,\overline{w})-f(z_{0},\overline{z}_{0},w,\overline{w})\}\}] \\ + \overline{\nabla_{z}f(z_{0},\overline{z}_{0},w,\overline{w})\eta^{T}(z,\overline{z},z_{0},\overline{z}_{0})} \end{array} \right.$$

$$\left\{ \begin{array}{l} \operatorname{Re}[g_{i}(z,z,w,\overline{w})] = 0, i = 1,2,...,k. \text{ then} \end{array} \right.$$

$$(z,\overline{z}) \in \mathbb{C}^{n} \times \mathbb{C}^{n}$$
 If $\operatorname{Re}[g_{i}(z,z,w,\overline{w})] = 0, i = 1,2,...,k$. then

International Journal of Computing and

Volume 1 Issue 2 September 2011

$$\operatorname{Re}\left[b_{i}(z,\overline{z},z_{0},\overline{z}_{0})\{\varphi_{i}\{g_{i}(z,z,w,\overline{w})\}\}\right] \\
\geq \operatorname{Re}\left[\overline{\nabla_{z}g(z_{0},\overline{z}_{0},w,\overline{w})\eta^{T}(z,\overline{z},z_{0},\overline{z}_{0})} \\
+\overline{\nabla_{\overline{z}}g(z_{0},\overline{z}_{0},w,\overline{w})\eta^{T}(z,\overline{z},z_{0},\overline{z}_{0})}\right] \tag{2}$$

Definition 2.2:

The Problem (P) is said to be SFJ-invex if there exist $\eta: C^n \times C^n \times C^m \times C^m \to C$, Such that

The Problem (F) is said to be SFJ-invex it there exist
$$\eta: C \times C \times C \times C \to C$$
, such that
$$\begin{cases}
\operatorname{Re}[f(z,z,w,\overline{w}) - f(z_0,\overline{z}_0,w,\overline{w})] \\
\geq \operatorname{Re}[\overline{\nabla}_z f(z_0,\overline{z}_0,w,\overline{w})\eta^T(z,\overline{z},z_0,\overline{z}_0)] \\
+ \overline{\nabla}_{\overline{z}} f(z_0,\overline{z}_0,w,\overline{w})\eta^T(z,\overline{z},z_0,\overline{z}_0)]
\end{cases}$$

$$\Rightarrow \begin{cases}
\operatorname{Re}[g_i(z,z,w,\overline{w})] \\
\geq \operatorname{Re}[g_i(z,z,w,\overline{w})] \\
\geq \operatorname{Re}[\overline{\nabla}_z g_i(z_0,\overline{z}_0,w,\overline{w})\eta^T(z,\overline{z},z_0,\overline{z}_0)] \\
+ \overline{\nabla}_{\overline{z}} g_i(z_0,\overline{z}_0,w,\overline{w})\eta^T(z,\overline{z},z_0,\overline{z}_0)]
\end{cases}$$

$$(4) + \overline{\nabla}_{\overline{z}} g_i(z_0,\overline{z}_0,w,\overline{w})\eta^T(z,\overline{z},z_0,\overline{z}_0)]$$

Specialized and Refereed Journal for Research Scholars, Academicians, Engineers and Scientists

Volume 1 Issue 2 September 2011

Theorem 2.1:

Every SFJ-invex program is an SFJ-univex program, but the converse may not be true.

Proof:

Assume that a given program (P) is SFJ-invex, i.e., there exists a function

$$\eta: C^n \times C^n \times C^m \times C^m \to C$$
, Such that

$$(z_0,\overline{z}_0) \in C^n \times C^n \qquad \qquad \begin{cases} \operatorname{Re}[f(z,z,w,\overline{w}) - f(z_0,\overline{z}_0,w,\overline{w})] \\ \geq \operatorname{Re}[\overline{\nabla}_z f(z_0,\overline{z}_0,w,\overline{w})\eta^T(z,\overline{z},z_0,\overline{z}_0) \\ + \overline{\nabla}_{\overline{z}} f(z_0,\overline{z}_0,w,\overline{w})\eta^T(z,\overline{z},z_0,\overline{z}_0)] \end{cases}$$

$$\text{If } \operatorname{Re}[g_i(z,z,w,\overline{w})] = 0, i = 1,2,...,k. \text{ then }$$

$$\operatorname{Re}[g_i(z,z,w,\overline{w})] \\ \geq \operatorname{Re}[\overline{\nabla}_z g_i(z_0,\overline{z}_0,w,\overline{w})\eta^T(z,\overline{z},z_0,\overline{z}_0) \\ + \overline{\nabla}_{\overline{z}} g_i(z_0,\overline{z}_0,w,\overline{w})\eta^T(z,\overline{z},z_0,\overline{z}_0)]$$

$$\text{Hence , problem} \qquad (P) \quad \text{is SFJ-univex with respect to } b_0 = b_i = 1 \quad ,$$

$$\operatorname{Re}[\phi_0(f)] = \operatorname{Re}[f]$$
, $\operatorname{Re}[\phi_i(g)] = \operatorname{Re}[g_i]$, for i=1,2,...,k and the same η .

For the converse part see the following example:

Example 2.1:

Specialized and Refereed Journal for Research Scholars, Academicians, Engineers and Scientists

Volume 1 Issue 2 September 2011

Consider the following problem:

min
$$f[z, \overline{z}, w, \overline{w}] = z + \overline{z}$$
 such that $g[z, \overline{z}, w, \overline{w}] = -[z + \overline{z}] + 1 \le 0$

The problem is SFJ-univex with respect to $\eta[z, \overline{z}, z_0, \overline{z}_0] = \frac{1}{2}[z - z_0 + \overline{z} - \overline{z}_0],$

 $b_0=b_1=1, \phi_0(f)=f$, $\phi_1=-g$, at $z_0=1$, but the problem is not SFJ-invex at $z_0=1$ since $g[z_0,\overline{z}_0,w,\overline{w}]=0$ but

$$\begin{split} & \operatorname{Re}[g_{i}(z,z,w,\overline{w})] \\ & \geq \operatorname{Re}[\nabla_{z}g_{i}(z_{0},\overline{z}_{0},w,\overline{w})\eta^{T}(z,\overline{z},z_{0},\overline{z}_{0}) + \nabla_{\overline{z}}g_{i}(z_{0},\overline{z}_{0},w,\overline{w})\eta^{T}(z,\overline{z},z_{0},\overline{z}_{0})] \\ & -[z+\overline{z}]+1-\{\frac{1}{2}[z-1+\overline{z}-1][-1]+\frac{1}{2}[z-1+\overline{z}-1][-1]\} = -[z+\overline{z}]+1+[z+\overline{z}]-2=-1\leq 0 \end{split}$$

So the problem is SFJ-univex but not SFJ-invex.

3. Nonlinear programming:

In this section we will show that optimality and duality results still hold for the nonlinear problem (P) under weaker generalized convexity conditions.

Theorem 3.1:Optimality:

Specialized and Refereed Journal for Research Scholars, Academicians, Engineers and Scientists

Volume 1 Issue 2 September 2011

Let $(z_0, \overline{z}_0, w, \overline{w})$ be (P) feasible for the SFJ-univex problem (P). Suppose that there

$$(u, \overline{u}, w, \overline{w}) \in \mathbb{C}^n \times \mathbb{C}^n \times \mathbb{C}^m \times \mathbb{C}^m$$

subject to

$$\operatorname{Re}\left[\overline{\nabla_{z}f[z_{0},\overline{z}_{0},w,\overline{w}]} + \nabla_{\overline{z}}f[z_{0},\overline{z}_{0},w,\overline{w}]\right\} + u^{T}\overline{\nabla_{z}g[z_{0},\overline{z}_{0},w,\overline{w}]} + u^{H}\nabla_{\overline{z}}g[z_{0},\overline{z}_{0},w,\overline{w}]\right\} = 0 \quad (5)$$

$$Re[g_i[z_0, \bar{z}_0, w, \bar{w}]] < 0 \Rightarrow u_i = 0, \bar{u}_i = 0, i = 1, 2, ..., k$$
(6)

and
$$u \ge 0$$
, (7)

Further suppose that
$$\operatorname{Re}[\phi_0(f_1)] \ge 0 \Rightarrow \operatorname{Re}[f_1] \ge 0$$
 (8)

$$\operatorname{Re}[f_1] \le 0 \Longrightarrow \operatorname{Re}[\phi_0(f_1)] \le 0 \tag{9}$$

and that
$$\text{Re}[b_0(z, \bar{z}, z_0, \bar{z}_0)] > 0$$
 (10)

for all feasible (z, z, w, \overline{w}) . Then $(z_0, \overline{z}_0, w, \overline{w})$ is an optimal solution of (P).

Proof:

Let (z, z, w, \overline{w}) be (P) feasible . Then (1),(2),(5),(6),(7),(8), and (9), we have

$$\begin{split} & \operatorname{Re}[b_{0}(z,\overline{z},z_{0},\overline{z}_{0})\{\phi_{0}\{f(z,z,w,\overline{w})-f(z_{0},\overline{z}_{0},w,\overline{w})\}] \\ & \geq \operatorname{Re}[\overline{\nabla_{z}f(z_{0},\overline{z}_{0},w,\overline{w})\eta^{T}(z,\overline{z},z_{0},\overline{z}_{0})} + \nabla_{\overline{z}}f(z_{0},\overline{z}_{0},w,\overline{w})\eta^{T}(z,\overline{z},z_{0},\overline{z}_{0})] \end{split}$$

Specialized and Refereed Journal for Research Scholars, Academicians, Engineers and Scientists

Volume 1 Issue 2 September 2011

$$= \operatorname{Re}[\sum_{i=1}^k u_i \overline{\nabla_z g_i(z_0, \overline{z}_0, w, \overline{w}) \eta^T(z, \overline{z}, z_0, \overline{z}_0)} + \sum_{i=1}^k \overline{u}_i \nabla_{\overline{z}} g_i(z_0, \overline{z}_0, w, \overline{w}) \eta^T(z, \overline{z}, z_0, \overline{z}_0)]$$

$$\geq -\operatorname{Re}\left[\sum_{i=1}^{k} b_{i}(z,\overline{z},z_{0},\overline{z}_{0})(u,\overline{u},w,\overline{w})\{\phi_{i}\{g_{i}(z,z,w,\overline{w})\}\}\}\right] \geq 0.$$

From (10), it follows that

$$\operatorname{Re}\{\phi_{0}\{f(z,\overline{z},w,\overline{w}) - f(z_{0},\overline{z}_{0},w,\overline{w})\} \ge 0$$

By (8), we have
$$\text{Re}[f(z,z,w,\overline{w}) - f(z_0,\overline{z}_0,w,\overline{w})] \ge 0$$

Therefore, $(z_0, \overline{z}_0, w, \overline{w})$ is an optimal solution of (P).

(D) Max. Re[$f(v, \overline{v}, w, \overline{w})$

Subject to

$$\operatorname{Re}[\{\overline{\nabla_z f[v,\overline{v},w,\overline{w}]} + \nabla_{\overline{z}} f[v,\overline{v},w,\overline{w}]\} + x^T \overline{\nabla_z g[v,\overline{v},w,\overline{w}]} + x^H \nabla_{\overline{z}} g[v,\overline{v},w,\overline{w}]\}] = 0$$

$$\operatorname{Re}\left\{\left[y+\overline{y}\right]^{T}g[v,\overline{v},w,\overline{w}]\right\}\geq0,\ y\geq0$$

Duality results can be obtained under similar conditions . We show some of them below.

Theorem 3.2 (weak duality):

Volume 1 Issue 2 September 2011

Let $(x, \overline{x}, w, \overline{w})$ be (P)-feasible and $\{(u, \overline{u}, w, \overline{w}), y\}$ be (D)-feasible. If there exist $\eta, \phi_0, b_0, \phi_i, b_i, i = 1, 2, ..., m$, with ϕ_0 strictly increasing, such that conditions (1),(2) and (8) are satisfied at $((x, \overline{x}, w, \overline{w}), (u, \overline{u}, w, \overline{w}))$, $y_i = 0$ when $\text{Re}[g_i(u, \overline{u}, w, \overline{w})] > 0$, and $\sum_{i=1}^m b_i(x, \overline{x}, u, \overline{u})(y_i + \overline{y}_i)\phi_i(g_i(x, \overline{x}, w, \overline{w})) \leq 0$, then $\text{Re}[f(x, \overline{x}, w, \overline{w}) - f(u, \overline{u}, w, \overline{w})] \geq 0$.

Proof:

Assume that $\operatorname{Re}[f(x, \overline{x}, w, \overline{w}) - f(u, \overline{u}, w, \overline{w})] < 0$. Then

$$\operatorname{Re}\left[b_{0}(x,\overline{x},u,\overline{u})\phi_{0}\left\{f(x,\overline{x},w,\overline{w})-f(u,\overline{u},w,\overline{w})\right\}\right]<0\tag{11}$$

for all feasible $(x, \overline{x}, u, \overline{u}, y)$.

On the other hand, by the definition of SFJ-Univexity and the assumptions of the theorem, we have

$$\begin{split} & \operatorname{Re}[b_0(x,\overline{x},u,\overline{u})\phi_0\{f(x,\overline{x},w,\overline{w}) - f(u,\overline{u},w,\overline{w})\}] \\ & \geq \operatorname{Re}[\eta^T(x,\overline{x},u,\overline{u})\nabla_x f(u,\overline{u},w,\overline{w}) + \eta^T(x,\overline{x},u,\overline{u})\nabla_{\overline{x}} f(u,\overline{u},w,\overline{w})] \end{split}$$

$$= \operatorname{Re}\left[\overline{\eta^{T}(x, \overline{x}, u, \overline{u})\sum_{i=1}^{m} y_{i}^{T} \nabla_{x} g_{i}(u, \overline{u}, w, \overline{w})} + \eta^{T}(x, \overline{x}, u, \overline{u})\sum_{i=1}^{m} y_{i}^{H} \nabla_{\overline{x}} g_{i}(u, \overline{u}, w, \overline{w})\right]$$

$$\geq -\sum_{i=1}^{m} b_i(x, \overline{x}, u, \overline{u})(y_i + \overline{y}_i)\phi_i(g_i(x, \overline{x}, w, \overline{w})) \geq 0$$
, which contradicts (9). Hence the result.

Volume 1 Issue 2 September 2011

Theorem 3.3 (Strong duality):

If $(x_*, \overline{x}_*, w, \overline{w})$ is (P)-feasible and a constraint qualification is satisfied at $(x_*, \overline{x}_*, w, \overline{w})$, then there exists $y_* \in C^m$ such that $(x_*, \overline{x}_*, y_*)$ is (D)-feasible and the values of the objective functions for (P) and (D) are equal at $(x_*, \overline{x}_*, w, \overline{w})$ and $(x_*, \overline{x}_*, y_*)$, respectively. Furthermore, if for all (P)-feasible $(x, \overline{x}, w, \overline{w})$ and (D)-feasible (u, \overline{u}, y) , the hypothesis of the theorem 3.2 are satisfied, then $(x_*, \overline{x}_*, y_*)$ is (D)-optimal.

Proof:

Since a constraint qualification is satisfied at $(x_*, \overline{x}_*, w, \overline{w})$ then there exists $y_* \in C^m$ such that the following Kuhn-Tucker conditions are satisfied.

$$\operatorname{Re}\left[\overline{\nabla_{\mathbf{u}}f(x_{*},\overline{x}_{*},w,\overline{w})} + y_{*}^{T}\overline{\nabla_{\mathbf{u}}g(x_{*},\overline{x}_{*},w,\overline{w})} + \nabla_{\overline{\mathbf{u}}}f(x_{*},\overline{x}_{*},w,\overline{w}) + y_{*}^{H}\nabla_{\overline{\mathbf{u}}}g(x_{*},\overline{x}_{*},w,\overline{w})\right] = 0$$

$$(y_{*}^{T} + y_{*}^{H})g(x_{*},\overline{x}_{*},w,\overline{w}) = 0, y_{*} \geq 0$$

Therefore (x_*, \bar{x}_*, y_*) is (D)-feasible.

Suppose that $(x_*, \overline{x}_*, y_*)$ is not (D)-optimal . Then there exists (D)-feasible (u, \overline{u}, y) such that

Specialized and Refereed Journal for Research Scholars, Academicians, Engineers and Scientists

Re[$f(x_*, \overline{x}_*, w, \overline{w}) - f(u, \overline{u}, w, \overline{w})$]<0. This contradicts theorem 3.2.

Therefore $(x_*, \overline{x}_*, y_*)$ is (D)-optimal.

4. Multiobjective Programming:

Consider the following problems:

(MP) Min
$$\operatorname{Re}[f_i(x, \overline{x}, w, \overline{w})]$$
 such that $\operatorname{Re}[g_J(x, \overline{x}, w, \overline{w})] \leq 0$, where

$$f_i: C^n \times C^n \times C^m \times C^m \to C, i = 1, 2, ..., p$$
, and $g_j: C^n \times C^n \times C^m \times C^m \to C, j = 1, 2, ..., k$,

m,n<p,k , f_i and g_j are all differentiable functions and the minimum is obtained in terms of efficiency as defined below;

(MD) Max. Re[
$$f(u, \overline{u}, w, \overline{w})$$
]

$$\operatorname{Re}\left[\nabla_{x} \overline{\{v_{i}^{T} f(u, \overline{u}, w, \overline{w}) + y_{j}^{T} g(u, \overline{u}, w, \overline{w})\}} + \nabla_{\overline{x}} \{v_{i}^{H} f(u, \overline{u}, w, \overline{w}) + y_{j}^{H} g(u, \overline{u}, w, \overline{w})\}\right] = 0$$

$$\operatorname{Re}\left[(y_{i}^{T} + y_{j}^{H})g(u, \overline{u}, w, \overline{w})\right] \geq 0 \quad v \geq 0, y \geq 0.$$

Specialized and Refereed Journal for Research Scholars, Academicians, Engineers and Scientists

Volume 1 Issue 2 September 2011

Definition 4.1: An (MP)-feasible $(x_*, \overline{x}_*, w, \overline{w})$ is said to be an efficient solution of (MP)if there exists no $(x, \overline{x}, w, \overline{w})$ such that $\text{Re}[f(x, \overline{x}, w, \overline{w}) - f(x_*, \overline{x}_*, w, \overline{w})] \leq 0$.

Now, we will establish optimality conditions for a point to be an efficient solution of (MP).

Theorem 4.1 (Optimality):

Let $(x_*, \overline{x}_*, w, \overline{w})$ be (MP)-feasible, suppose that there exist $v_* \in C^p$, $y_* \in C^k$, η, b_0, b_1, ϕ_0 and ϕ_1 such that

$$\operatorname{Re}[b_{0}(x, \overline{x}, x_{*}, \overline{x}_{*})\phi_{0}\{v_{*}^{T}(f(x, \overline{x}, w, \overline{w}) - f(x_{*}, \overline{x}_{*}, w, \overline{w}))\}] \\
\geq \operatorname{Re}[\eta^{T}(x, \overline{x}, x_{*}, \overline{x}_{*})\{v_{*}^{T} \overline{\nabla_{x} f(x_{*}, \overline{x}_{*}, w, \overline{w})} + v_{*}^{H} \nabla_{\overline{x}} f(x_{*}, \overline{x}_{*}, w, \overline{w})\}] \tag{12}$$

$$\operatorname{Re}[b_{1}(x, \bar{x}, x_{*}, \bar{x}_{*})\phi_{1}\{y_{*}^{T}g(x, \bar{x}, w, \bar{w})\}] \\
\geq \operatorname{Re}[\eta^{T}(x, \bar{x}, x_{*}, \bar{x}_{*})\{y_{*}^{T}\overline{\nabla_{x}g(x_{*}, \bar{x}_{*}, w, \bar{w})} + y_{*}^{H}\nabla_{\bar{x}}g(x_{*}, \bar{x}_{*}, w, \bar{w})\}]$$
(13)

for all (MP)-feasible $(x, \overline{x}, w, \overline{w})$ and

$$\operatorname{Re}\left[\nabla_{x}\left\{v_{*}^{T}f(u,\overline{u},w,\overline{w})+y_{*}^{T}g(u,\overline{u},w,\overline{w})\right\}\right] + \nabla_{\overline{y}}\left\{v_{*}^{H}f(u,\overline{u},w,\overline{w})+y_{*}^{H}g(u,\overline{u},w,\overline{w})\right\}\right]$$

$$(14)$$

Specialized and Refereed Journal for Research Scholars, Academicians, Engineers and Scientists

Volume 1 Issue 2 September 2011

$$v_* \ge 0, y_* \ge 0 \tag{15}$$

further suppose that
$$f \le 0 \Rightarrow \phi_0(f)$$
 (16)

$$\phi_1(f) \ge 0 \Rightarrow f > 0 \tag{17}$$

$$b_0(x, \bar{x}, x_*, \bar{x}_*) \ge 0, b_1(x, \bar{x}, x_*, \bar{x}_*) > 0 \tag{18}$$

for all feasible $(x, \overline{x}, w, \overline{w})$. Then $(x_*, \overline{x}_*, w, \overline{w})$ is an efficient solution of (MP).

Proof:

Let $(x, \overline{x}, w, \overline{w})$ be (MP)-feasible ,suppose that $\text{Re}[f(x, \overline{x}, w, \overline{w}) - f(x_*, \overline{x}_*, w, \overline{w})] \le 0$. Then

$$\operatorname{Re}\left[v_{\star}^{T}\left\{f(x,\overline{x},w,\overline{w})-f(x_{\star},\overline{x}_{\star},w,\overline{w})\right\}\right] \leq 0$$
 i.e.,

Fro (14) and (16) it follows that

$$\operatorname{Re}[b_{0}(x, \overline{x}, x_{*}, \overline{x}_{*})\phi_{0}\{v_{*}^{T}(f(x, \overline{x}, w, \overline{w}) - f(x_{*}, \overline{x}_{*}, w, \overline{w}))\}] \leq 0,$$

therefore by (12)
$$\operatorname{Re}[\eta^T(x, \overline{x}, x_*, \overline{x}_*)\{v_*^T \overline{\nabla_x f(x_*, \overline{x}_*, w, \overline{w})} + v_*^H \nabla_{\overline{x}} f(x_*, \overline{x}_*, w, \overline{w})\}] \leq 0$$
,

then by (14)
$$\text{Re}[\eta^T(x, \bar{x}, x_*, \bar{x}_*) \{y_*^T \overline{\nabla_x g(x_*, \bar{x}_*, w, \overline{w})} + y_*^H \nabla_{\overline{x}} g(x_*, \bar{x}_*, w, \overline{w})\}] \ge 0$$
,

from (13), we obtain

Specialized and Refereed Journal for Research Scholars, Academicians, Engineers and Scientists

Volume 1 Issue 2 September 2011

 $\mathrm{Re}[b_1(x,\overline{x},x_*,\overline{x}_*)\phi_1\{(y_*^T+y_*^H)g(x,\overline{x},w,\overline{w})\}] \geq 0 \text{ . By (17) and (18) } \text{ it follows that }$

 $(y_*^T + y_*^H)g(x, \overline{x}, w, \overline{w}) > 0$, which is a contradiction to (13) and the (MP)-feasibility of $(x, \overline{x}, w, \overline{w})$. Therefore $(x_*, \overline{x}_*, w, \overline{w})$ is an efficient solution of (MP).

Theorem 4.2 (Weak duality):

Let $(x, \overline{x}, w, \overline{w})$ be (MP)-feasible and $\{(u, \overline{u}, w, \overline{w}), y\}$ be (MD)-feasible. If there exist η, b_0, b_1, ϕ_0

and
$$\phi_1$$
 such that
$$\begin{aligned} &\operatorname{Re}[b_0(x,\overline{x},u,\overline{u})\phi_0\{v_*^T(f(x,\overline{x},w,\overline{w})-f(u,\overline{u},w,\overline{w}))\}] \\ &\geq \operatorname{Re}[\eta^T(x,\overline{x},u,\overline{u})\{v_*^T\overline{\nabla_x f(u,\overline{u},w,\overline{w})}+v_*^H\nabla_{\overline{x}}f(u,\overline{u},w,\overline{w})\}] \end{aligned}$$

$$\begin{split} & \operatorname{Re}[b_1(x, \overline{x}, u, \overline{u}) \phi_1 \{ y_*^T g(x, \overline{x}, w, \overline{w}) \}] \\ & \geq \operatorname{Re}[\eta^T(x, \overline{x}, u, \overline{u}) \{ y_*^T \overline{\nabla_x g(u, \overline{u}, w, \overline{w})} + y_*^H \nabla_{\overline{x}} g(u, \overline{u}, w, \overline{w}) \}] \end{split}$$

(16) and (17) hold and (18) is satisfied at $((x, \overline{x}, w, \overline{w}), (u, \overline{u}, w, \overline{w}))$ then $\operatorname{Re}[f(x, \overline{x}, w, \overline{w}) - f(u, \overline{u}, w, \overline{w})] > 0.$

Proof:

The proof is similar to that of Theorem 4.1.

Theorem 4.3(Strong duality):

Volume 1 Issue 2 September 2011

If $(x_*, \overline{x}_*, w, \overline{w})$ is an efficient solution of (MP)and a suitable constraint qualification holds at $(x_*, \overline{x}_*, w, \overline{w})$ as Singh's[3] and analogous with Rueda and Mishra [13], then there exist v_* and y_* such that $((x_*, \overline{x}_*, w, \overline{w}), v_*, y_*)$ is feasible for the dual (MD) and the values of the objective functions for (MP) and (MD) are equal at $(x_*, \overline{x}_*, w, \overline{w})$ and $((x_*, \overline{x}_*, w, \overline{w}), v_*, y_*)$, respectively. Furthermore, if $v_*^T f$ and $y_*^T g$ satisfy conditions (12) and (13), ϕ_0 and ϕ_1 satisfy (16) and (17), and b_0 and b_1 satisfy (18) then $((x_*, \overline{x}_*, w, \overline{w}), v_*, y_*)$ is efficient for (MD).

Proof:

From the assumption it follows that $((x_*, \overline{x}_*, w, \overline{w}), v_*, y_*)$ is (MD)-feasible. Suppose that it is not efficient. Then there exists $((u, \overline{u}, w, \overline{w}), v, y)$ feasible such that $\text{Re}[f(x, \overline{x}, w, \overline{w}) - f(x_*, \overline{x}_*, w, \overline{w})] \ge 0$.

This contradicts Theorem 4.2 . Hence , $((x_*, \overline{x}_*, w, \overline{w}), v_*, y_*)$ is efficient for (MD).

5. Conclusion:

Volume 1 Issue 2 September 2011

In this paper, we have extended an earlier work of Rueda et al. [10] to SFJ-univexity conditions. Results for minmax programming and generalized fractional programming problems can be obtained on similar lines.

Extension of this work under SFJ-pseudo-univexity in real spaces and other conditions would extend anearlier work of Kaul et al.[12]. It also extends the work of [13].

References:

Volume 1 Issue 2 September 2011

- 1. B.Gupta, Second order duality and symmetric duality for non-linear programs in complex spaces, J.Math.Anal.Appl.97 (1983)56-64.
- C.R.Bector ,S.C.Chandra,S.K.Juneja and S.gupta, Univex functions and univex nonlinear programming , Lecture Notes in Economics and Mathematical Systems, Springer – Verlag 405(1994)1-13.
- 3. C. Singh, Optimality conditions in multiobjective differentiable programming, Journal of Optimization Theory and Applications 53(1987)115-123.
- 4. J.C.Liu , Sufficiency criteria and duality in complex nonlinear programming involving pseudoinvex functions ,Optimization 39 (1997) 123-135 .
- 5. J.C.Liu , C.C.Lin R.L.Sheu ,Optimality and duality for complex non differentiable fractional programming , J.Math.Anal.Appl. 210 (1997) 804-824. .
- 6. M.A Hanson ,On sufficiency of the Kuhn –Tucker conditions .J. Math.Anal. and Appl.80(1981)545-550.
- 7. M.A Hanson and B.M ond ,Necessary and sufficient conditions in constrained optimization, Mathematical Programming 37(1987) 51-58.
- 8. N.Levinson, Linear Programming in complex space, J.Math.Anal.Appl. 14(1966) 44-62.

Volume 1 Issue 2 September 2011

- 9. N.G Rueda and M.A Hanson, Optimality criteria in mathematical programming involving generalized invexity, . J. Math.Anal. and Appl.130(1988)375-385.
- 10. N.G Rueda and M.A Hanson and C.Singh, Optimality and duality with generalized convexity Journal of Theory and Applications 86(1995)491-500.
- 11. O.Ferraro, On nonlinear programming in complex spaces , J.Math.Anal.Appl. 164(19920399-416 .
- 12. R.N.Kaul, S.K.Juneja and M.K.Srivastava ,Optimality criteria and duality in multiobjective optimization involving generalized invexity, Journal of Optimization Theory and Applications 80(1994)465-482.
- 13. S.K.Mishra and N.G.Rueda , On univexity-type nonlinear programming problems, Bull. Allahabad Math. Soc. 16(2001)105-113.
- 14. S.K.Mishra and Norma G.Reuda , Symmetric duality for mathematical programming in complex spaces with F-convexity .J.Math.Anal.Appl. 284 , (2003) 250-265 .
- 15. T.Weir and B.Mond, Generalized convexity and duality for complex programming problems, Cahiers Centre Etudes Rech.Oper.26 (1984)137-142.
- 16. Z.K Xu On invexity –type nonlinear programming problems, journal of Optimization Theory and Application 80 (1994) 135-148.